FLOOD INSURANCE STUDY FEDERAL EMERGENCY MANAGEMENT AGENCY

VOLUME 1 OF 5

PASSAIC COUNTY, NEW JERSEY (ALL JURISDICTIONS)

	.
COMMUNITY NAME	COMMUNITY NUMBER
BLOOMINGDALE, BOROUGH OF	345284
CLIFTON, CITY OF	340398
HALEDON, BOROUGH OF	340399
HAWTHORNE, BOROUGH OF	340400
LITTLE FALLS, TOWNSHIP OF	340401
NORTH HALEDON, BOROUGH OF	340402
PASSAIC, CITY OF	340403
PATERSON, CITY OF	340404
POMPTON LAKES, BOROUGH OF	345528
PROSPECT PARK, BOROUGH OF	340406
RINGWOOD, BOROUGH OF	340407
TOTOWA, BOROUGH OF	340408
WANAQUE, BOROUGH OF	340409
WAYNE, TOWNSHIP OF	345327
WEST MILFORD, TOWNSHIP OF	340411
WOODLAND PARK, BOROUGH OF*	340412

Preliminary: January 9, 2015 FLOOD INSURANCE STUDY NUMBER 34031CV001B Version Number 2.1.1.1

* The Borough of Woodland Park was formerly known as the Borough of West Paterson.

NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.

Part or all of this FIS may be revised and republished at any time. In addition, part of this FIS may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS components.

Initial Countywide FIS Effective Date: September 28, 2007

Revised Countywide FIS Date:

This preliminary FIS report does not include unrevised Floodway Data Tables or unrevised Flood Profiles. These Floodway Data Tables and Flood Profiles will appear in the final FIS report.

TABLE OF CONTENTS – Volume 1

			Page
1.0	<u>INT</u>	RODUCTION	1
	1.1	Purpose of Study	1
	1.2	Authority and Acknowledgments	1
	1.3	Coordination	5
2.0	ARE	A STUDIED	5
	2.1	Scope of Study	5
	2.2	Community Description	11
	2.3	Principal Flood Problems	11
	2.4	Flood Protection Measures	14
3.0	ENG	INEERING METHODS	18
	3.1	Hydrologic Analyses	18
	3.2	Hydraulic Analyses	40
	3.3	Vertical Datum	56
4.0	FLO	ODPLAIN MANAGEMENT APPLICATIONS	57
	4.1	Floodplain Boundaries	57
	4.2	Floodways	58
5.0	<u>INSU</u>	URANCE APPLICATIONS	105
6.0	<u>FLO</u>	OD INSURANCE RATE MAP	107
7.0	<u>OTH</u>	IER STUDIES	107
8.0	LOC	ATION OF DATA	110
9.0	BIBI	LIOGRAPHY AND REFERENCES	110

<u>TABLE OF CONTENTS – Volume 1</u> - continued

Page 1

FIGURES

Figure 1 – Floodway Schematic	106
TABLES	
Table 1 – Initial and Final CCO Meetings	5
Table 2 – Flooding Sources Studied by Detailed Methods	6
Table 3 – Scope of Revision	7
Table 4 – Model Dates for Riverine Flooding	8-10
Table 5 – Letters of Map Correction	10-11
Table 6 – Summary of Discharges	25-40
Table 7 – Summary of Stillwater Elevations	41
Table 8 – Manning's "n" Values	47-49
Table 9 – Limited Detailed (Enhanced A-Zones) Flood Hazard Data	50-55
Table 10 – Floodway Data	60-104
Table 11 – Community Map History	108-109

EXHIBITS

Exhibit 1-	Flood Profiles	
	Acid Brook	Panels 01P-12P
	Belcher Creek	Panels 13P-17P
	Belcher Creek Branch 1	Panels 18P-21P
	Belcher Creek Branch 2	Panels 22P-28P
	Branch Weasel Brook	Panel 29P
	Branch 3-5-2, Weasel Brook	Panels 30P-31P

TABLE OF CONTENTS – Volume 2

EXHIBITS - continued

Burnt Meadow Brook	Panels 32P-44P
Burnt Meadow Brook Branch 5	Panels 45P-48P
Buttermilk Falls	Panels 49P-51P
Cold Spring Brook	Panels 52P-56P
Cooley Brook	Panels 57P-60P
Cupsaw Brook	Panels 61P-66P
Cupsaw Brook Branch 1	Panels 67P-72P
Cupsaw Brook Branch 2	Panels 73P-74P
Cupsaw Brook Branch 3	Panels 75P-76P
Cupsaw Brook Branch 4	Panels 77P-79P

Deep Brook Dowling Brook Erskine Brook

Panels80P-81PPanels82P-86PPanels87P-97P

TABLE OF CONTENTS – Volume 3

EXHIBITS - continued

Glen Place Brook	Panels 98P-99P
Goffle Brook	Panels 100P-102P
Great Notch Brook	Panels 103P-105P
Green Brook	Panels 106P-111P
Haycock Brook	Panels 112P-121P
High Mountain Brook (Downstream Reach)	Panels 122P-124P
High Mountain Brook (Upstream Reach)	Panels 125P-129P
High Mountain Brook 2	Panels 130P-135P
Jones Brook	Panels 136P-138P
Longhouse Creek	Panels 139P-143P
MacDonald Brook	Panels 144P-146P
Meadow Brook	Panels 147P-149P
Meadow Brook Branch 2	Panels 150P-151P
Molly Ann Brook	Panels 152P-161P
Molly Ann Brook Tributary 3	Panels 162P-164P
Molly Ann Brook Tributary 4	Panels 165P-170P
Molly Ann Brook Tributary 6	Panels 171P-173P
Morsetown Brook	Panels 174P-179P
Naachtpunkt Brook	Panel 180P
Naachtpunkt Brook (Upper Reach)	Panels 181P-183P
Oakwood Lake Brook	Panels 184P-186P
Packanack Brook	Panels 187P-188P
Passaic River	Panels 189P-197P

TABLE OF CONTENTS – Volume 4

EXHIBITS - continued

Pearl Brook	Panels 198P-204P
Peckman River	Panels 205P-209P
Pequannock River	Panels 210P-227P
Pompton River	Panels 228P-229P
Pompton River Unnamed Tributary	Panel 230P
Post Brook (West Milford)	Panels 231P-236P
Post Brook Branch 1	Panel 237P
Post Brook Branch 2	Panels 238P-239P
Post Brook Branch 3	Panels 240P-242P
Post Brook Branch 4	Panels 243P-244P
Post Brook and Rainbow Valley Lake	Panels 245P-247P
Ramapo River	Panel 248P
Ringwood Creek	Panels 249P-251P
Ringwood Creek Branch 1	Panel 252P
Singac Brook	Panels 253P-259P

Slippery Rock Brook	Panels 260P-265P
Squaw Brook	Panels 266P-271P
Stephens Lake Brook	Panels 272P-273P
Stephens Lake Brook Branch 1	Panel 274P
Stephens Lake Brook Branch 2	Panels 275P-283P
Third River	Panels 284P-288P
Tributary 1 to Posts Brook	Panels 289P-292P
Tributary 2 to Posts Brook	Panel 293P
Tributary 1 to Singac Brook	Panel 294P
Tributary 3 to Singac Brook	Panels 295P-296P
Tributary to Van Dam Brook	Panel 297P

TABLE OF CONTENTS – Volume 5

EXHIBITS - continued

Van Dam Brook	Panels 298P-300P
Wabash Brook	Panel 301P
Wanaque River	Panels 302P-312P
Weasel Brook	Panels 313P-329P
West Brook Reach 1	Panels 330P-335P
West Brook Reach 2	Panels 336P-339P
West Brook Branch 7	Panels 340P-341P

Exhibit 2 - Flood Insurance Rate Map Index Flood Insurance Rate Map

FLOOD INSURANCE STUDY PASSAIC COUNTY, NEW JERSEY (ALL JURISDICTIONS)

1.0 <u>INTRODUCTION</u>

1.1 Purpose of Study

This Flood Insurance Study (FIS) investigates the existence and severity of flood hazards in, or revises and updates previous FISs/Flood Insurance Rate Maps (FIRMs) for, the geographic area of Passaic County, New Jersey, including the Boroughs of Bloomingdale, Haledon, North Haledon, Pompton Lakes, Prospect Park, Ringwood, Totowa, Wanaque and Woodland Park (formerly West Paterson); the Cities of Clifton, Passaic and Paterson; and the Townships of Little Falls, Wayne and West Milford.

This FIS aids in the administration of the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. This FIS has developed flood risk data for various areas of the county that will be used to establish actuarial flood insurance rates. This information will also be used by Passaic County officials to update existing floodplain regulations as part of the Regular Phase of the National Flood Insurance Program (NFIP), and will also be used by local and regional planners to further promote sound land use and floodplain development. Minimum floodplain management requirements for participation in the NFIP are found in Title 44 of the Code of Federal Regulations (CFR), Part 60.3.

In some States or communities, floodplain management criteria or regulations may exist that are more restrictive or comprehensive than the minimum Federal requirements. In such cases, the more restrictive criteria take precedence and the State (or other jurisdictional agency) will be able to explain them.

1.2 Authority and Acknowledgments

The sources of authority for this FIS are the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973, as amended.

This FIS has been prepared in a countywide format to include all communities within Passaic County. Information on the authority and acknowledgments for each jurisdiction included in this countywide FIS, as compiled from their previously printed FIS reports, is shown below.

Bloomingdale, Borough of: the hydrologic and hydraulic analyses in the FIS report dated December 4, 1985, represent a revision of the original analyses performed by the U.S. Army Corps of Engineers (USACE), performed by O'Brien & Gere Engineers, Inc., under subcontract to the New Jersey Department of Environmental Protection (NJDEP) for the Federal Emergency Management

	Agency (FEMA) under Contract No. H-3959. This work was completed in December 1983.
Clifton, City of:	the hydrologic and hydraulic analyses in the FIS report dated December 15, 1981, were performed by the NJDEP for FEMA under Contract No. H-3959. This work was completed in February 1979.
Haledon, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated September 16, 1980, were performed by the NJDEP for the Federal Insurance Administration (FIA) under Contract No. H-3959. This work was completed in February 1979.
Hawthorne, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated March 1980 were performed by Tippetts-Abbett-McCarthy-Stratton, Engineers and Architects, under subcontract to the NJDEP for the FIA under Contract No. H-3855. This work was completed in March 1977.
Little Falls, Township of:	the hydrologic and hydraulic analyses in the FIS report dated February 17, 1981, were performed by the NJDEP for the FIA under Contract No. H-3855. This work was completed in March 1979.
North Haledon, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated January 2, 1981, were performed by the NJDEP for the FIA under Contract No. H-3959. This work was completed in February 1979.
Passaic, City of:	the hydrologic and hydraulic analyses in the FIS report dated March 1979 were performed by Tippetts- Abbett-McCarthy-Stratton, Engineers and Architects, under subcontract to the NJDEP for the FIA under Contract No. H-3855. This work was completed in February 1977.
Paterson, City of:	the hydrologic and hydraulic analyses in the FIS report dated August 1976 were performed by Tippetts-Abbett-McCarthy-Stratton for the FIA under Contract No. H-3733.
Pompton Lakes, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated September 18, 1987, represent a revision of the original analyses performed by the Soil Conservation Service, performed by O'Brien & Gere Engineers, Inc., under subcontract to NJDEP for

	FEMA under Contract No. H-3959. This work was completed in December 1983.
Prospect Park, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated June 1977 were performed by NJDEP for the FIA under Contract No. H-3855. This work was completed in April 1977.
Ringwood, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated August 3, 1981, were performed by Elson T. Killam Associates, Inc., under subcontract to NJDEP for FEMA under Contract No. H-3959. This work was completed in December 1978.
Totowa, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated February 5, 1985, were performed by URS/MRS Engineers under subcontract to NJDEP for FEMA under Contract No. H-3959. This work was completed in January 1978.
Wanaque, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated August 15, 1989, were performed by Elson T. Killam Associates, Inc., under subcontract to NJDEP for the FIA under Contract No. H-3959. This work was completed in December 1978.
Wayne, Township of:	the hydrologic and hydraulic analyses in the FIS report dated September 29, 1986, represent a revision of the original analyses performed by the U.S. Geological Survey (USGS), prepared by O'Brien & Gere Engineers, Inc., under subcontract to NJDEP for FEMA under Contract No. 3959. This work was completed in December 1983.
West Milford, Township of:	the hydrologic and hydraulic analyses in the FIS report dated February 2, 1989, represent a revision of the original analyses performed by NJDEP, performed by Elson T. Killam Associates, Inc., under subcontract to NJDEP for FEMA under Contract No. H-3959. The original analyses were completed in December 1978. This work was completed in October 1987.
Woodland Park (formerly West Paterson), Borough of:	the hydrologic and hydraulic analyses in the FIS report dated June 15, 1981, were performed by

NJDEP for the FIA under Contract No. H-3959. This work was completed in September 1978.

For the September 28, 2007, FIS, revised hydrologic and hydraulic analyses for Molly Ann Brook, from the confluence with the Passaic River in the City of Paterson to Church Street in the Borough of Haledon, were prepared for FEMA by Medina Consultants, P.C., under Contract No. EMN-2003-CO-0005. That work was completed in September 2006.

Flood hazard mapping for the 2007 FIS and FIRMs uses digital orthophotography produced at a scale of 1:2,400 (1"=200') with a 1-foot pixel resolution. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Digital orthophotography is a process that converts aerial photography from an original photo negative to a digital product that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Aerial photography of the entire State of New Jersey was captured during March-May 2002. The ortho-rectification process achieved a +/- 4.0-foot horizontal accuracy at a 95-percent confidence level, National Standard for Spatial Data Accuracy (NSSDA).

For the [*date*] FIS, revised hydrologic and hydraulic analyses for the Passaic River were prepared for FEMA by Risk Assessment, Mapping and Planning Partners (RAMPP) (A Joint Venture between Dewberry, ESP and URS Corporation), under contract HSFEHQ-09-D-0369. This work was completed in March 2012.

Revised hydrologic analyses for Buttermilk Falls, Weasel Brook, the Wanaque River, the Pequannock River, and the Third River were prepared by the NJDEP, a Cooperating Technical Partner with FEMA, in August 2012. The hydraulic analyses were prepared by URS Corporation for NJDEP, under contract P1066-00. This work was completed in August 2013.

Revised hydraulic analyses for Acid Brook, Cupsaw Brook, Dowling Brook, Haycock Brook, High Mountain Brook, Meadow Brook, Packanack Brook, the Pequannock River, the Pompton River, the Ramapo River, Ringwood Creek, Singac Brook and West Brook were prepared by AECOM for NJDEP. This work was completed in August 2013

Flood hazard mapping for the [*date*] FIS and FIRMs uses digital orthophotography produced at a scale of 1:2,400 (1"=200') with a 1-foot pixel resolution. The aerial photography was captured during March-April 2012. The ortho-rectification process achieved a +/- 4.0-foot horizontal accuracy at a 95-percent confidence level, NSSDA.

The coordinate system used for the production of the digital FIRM is State Plane in the New Jersey projection zone 2900 US feet, referenced to the North American Datum of 1983.

1.3 Coordination

Consultation Coordination Officer's (CCO) meetings may be held for each jurisdiction in this countywide FIS. An initial CCO meeting is held typically with representatives of FEMA, the community, and the study contractor to explain the nature and purpose of an FIS, and to identify the streams to be studied by detailed methods. A final CCO meeting is held typically with representatives of FEMA, the community, and the study contractor to review the results of the study.

The dates of the initial and final CCO meetings held for Passaic County and the incorporated communities within its boundaries prior to the September 28, 2007, FIS are shown in Table 1, "Initial and Final CCO Meetings."

TABLE 1 - INITIAL AND FINAL CCO MEETINGS

<u>Community</u>	Initial CCO Date	Final CCO Date
Bloomingdale, Borough of	March 11, 1976	October 22, 1984
Clifton, City of	March 9, 1976	April 24, 1979
Haledon, Borough of	March 9, 1976	February 21, 1979
Little Falls, Borough of	May 16, 1975	March 20, 1979
North Haledon, Borough of	March 9, 1976	February 21, 1979
Passaic, City of	May 16, 1975	November 13, 1978
Paterson, City of	April 18, 1975	December 3, 1975
Pompton Lakes, Borough of	March 11, 1976	December 12, 1984
Prospect Park, Borough of	May 16, 1975	April 7, 1977
Ringwood, Borough of	March 22, 1976	February 21, 1980
Totowa, Borough of	March 2, 1976	January 20, 1984
Wanaque, Borough of	March 22, 1976	January 15, 1980
Wayne, Township of	March 11, 1976	January 11, 1985
West Milford, Township of	March 22, 1976	February 21, 1980
Woodland Park (formerly West	March 9, 1976	April 14, 1979
Paterson), Borough of		

Final CCO meeting for the September 28, 2007 FIS were held on November 28, 2006 at the Passaic County Office of Emergency Management and was attended by FEMA, NJDEP and community representatives.

For this [*date*] FIS, an initial CCO meeting was held via WebEx on October 4, 2010, at 10 a.m. and was attended by FEMA, RAMPP and community representatives.

2.0 AREA STUDIED

2.1 Scope of Study

This FIS covers the geographic area of Passaic County, New Jersey.

All or portions of the flooding sources listed in Table 2, "Flooding Sources Studied by Detailed Methods," were studied by detailed methods. Limits of detailed study are indicated on the Flood Profiles (Exhibit 1) and on the FIRM (Exhibit 2).

TABLE 2 - FLOODING SOURCES STUDIED BY DETAILED METHODS

	High Magnetein Durgels 2	
Acid Brook	High Mountain Brook 2	Post Brook Branch 3
Belcher Creek	Jones Brook	Post Brook Branch 4
Belcher Creek Branch 1	Longhouse Creek	Ramapo River
Belcher Creek Branch 2	MacDonald Brook	Ringwood Creek
Branch, Weasel Brook	Meadow Brook	Ringwood Creek Branch 1
Branch 3-5-2, Weasel Brook	Meadow Brook Branch 2	Singac Brook
Burnt Meadow Brook	Molly Ann Brook	Slippery Rock Brook
Burnt Meadow Brook Branch 5	Molly Ann Brook Tributary 3	Squaw Brook
Buttermilk Falls	Molly Ann Brook Tributary 4	Stephens Lake Brook
Cold Spring Brook	Molly Ann Brook Tributary 6	Stephens Lake Brook Branch 1
Cooley Brook	Morsetown Brook	Stephens Lake Brook Branch 2
Cupsaw Brook	Naachtpunkt Brook	Third River
Cupsaw Brook Branch 1	Naachtpunkt Brook (Upper	Tributary 1 to Posts Brook
Cupsaw Brook Branch 2	Reach)	Tributary 2 to Posts Brook
Cupsaw Brook Branch 3	Oakwood Lake Brook	Tributary 1 to Singac Brook
Cupsaw Brook Branch 4	Packanack Lake	Tributary 3 to Singac Brook
Deep Brook	Passaic River	Tributary to Van Dam Brook
Dowling Brook	Pearl Brook	Van Dam Brook
Erskine Brook	Peckman River	Wabash Brook
Glen Place Brook	Pequannock River	Wanaque River
Goffle Brook	Pompton River	Weasel Brook
Great Notch Brook	Pompton River Unnamed	West Brook Reach 1
Green Brook	Tributary	West Brook Reach 2
Haycock Brook	Post Brook and Rainbow Valley	West Brook Branch 7
High Mountain Brook	Lake	
(Downstream Reach)	Post Brook (West Milford)	
High Mountain Brook	Post Brook Branch 1	
(Upstream Reach)	Post Brook Branch 2	

There were two streams named High Mountain Brook that were studied using detailed methods. Therefore, High Mountain Brook in the Borough of Ringwood has been renamed High Mountain Brook 2.

For the September 28, 2007, FIS, Molly Ann Brook was restudied using detailed methods. The revised hydrologic analysis includes the entire basin area of Molly Ann Brook (a drainage area of 7.94 square miles). The revised hydraulic analysis extends from its confluence with the Passaic River in the City of Paterson to Church Street in the Borough of Haledon.

As part of the [*date*] FIS, updated analyses were included for the flooding sources shown in Table 3, "Scope of Revision."

TABLE 3 – SCOPE OF REVISION

Stream	Limits of Revised or New Detailed Study
Acid Brook	From confluence with Ramapo River to approximately 2,320 feet upstream of Interstate 287
Branch 3-5-2 Weasel Brook	From confluence with Weasel Brook to approximately 1,205 feet upstream of County Highway 609
Buttermilk Falls	From confluence with Molly Ann Brook to approximately 1,514 feet upstream of County Highway 675
Cupsaw Brook	From confluence with Wanaque Reservoir to approximately 232 feet upstream of Kraft Place
Dowling Brook	From confluence with Passaic River to approximately 70 feet upstream of Lackawanna Avenue
Haycock Brook	From confluence with Ramapo River to approximately 4,223 feet upstream of Route 502
High Mountain Brook (Upstream Reach)	From confluence with Stephens Lake Brook to approximately 4,300 feet upstream of Stephens Lake Road
Meadow Brook	From confluence with Wanaque River to approximately 540 feet upstream of High Mountain Brook
Molly Ann Brook	From confluence with Passaic River to approximately 2,512 feet upstream of Sicomac Road
Packanack Brook	From confluence with Pompton River to approximately 3,428 feet upstream of Packanack Lake Drive
Passaic River	The entire reach within Passaic County
Pequannock River	From confluence with Pompton River to the confluence of Oak Ridge Reservoir
Pompton River	From confluence with Passaic River to the confluence of Pequannock River
Pompton River (Unnamed Tributary)	From the confluence with Pompton River to approximately 2,453 feet upstream of North Road
Ramapo River	From confluence with Pompton River to Bergen / Passaic county boundary
Ringwood Creek	From confluence with Wanaque Reservoir to approximately 2,618 feet upstream of County Highway 698
Singac Brook	From confluence with Passaic River to the confluence of Preakness Brook
Third River	From confluence with Passaic River to approximately 1,200 feet upstream of US Highway 46
Wanaque River	From confluence with Pequannock River to approximately 95 feet upstream of Ringwood Avenue
Weasel Brook	From approximately 576 feet downstream of Clifton Avenue to approximately 1,750 feet upstream of Confluence with Weasel 3-5-2 Brook
West Brook Reach 1	From confluence with Wanaque Reservoir to approximately 5,771 feet upstream of Magee Road

The areas studied by detailed methods were selected with priority given to all known flood hazard areas and areas of projected development and proposed construction.

Riverine flooding sources throughout the county have been studied by detailed methods at different times and, prior to the September 28, 2007, countywide FIS, often on a community-by-community basis. Table 4, "Model Dates for Riverine Flooding" represents the hydraulic modeling dates for the detailed study flooding sources in the county.

TABLE 4 – MODEL DATES FOR RIVERINE FLOODING

STREAM NAME

Acid Brook

Belcher Creek Belcher Creek Branch 1 Belcher Creek Branch 2 Branch, Weasel Brook Branch 3-5-2, Weasel Brook Burnt Meadow Brook Burnt Meadow Brook Branch 5 **Buttermilk Falls** Cold Spring Brook Cooley Brook Cupsaw Brook Cupsaw Brook Branch 1 Cupsaw Brook Branch 2 Cupsaw Brook Branch 3 Cupsaw Brook Branch 4 Deep Brook **Dowling Brook** Erskine Brook Glen Place Brook

Goffle Brook Great Notch Brook

Green Brook Haycock Brook High Mountain Brook (Downstream Reach) High Mountain Brook (Upstream Reach)

High Mountain Brook 2 Jones Brook

COMMUNITY

Borough of Pompton Lakes/ Borough of Wanaque Township of West Milford Township of West Milford Township of West Milford City of Clifton City of Clifton Borough of Ringwood Borough of Ringwood Borough of North Haledon Borough of Bloomingdale Township of West Milford Borough of Ringwood Borough of Hawthorne Borough of Woodland Park Borough of Ringwood Borough of North Haledon/ Township of Wayne Borough Hawthorne Township of Little Falls/ Borough of Woodland Park Township of West Milford Township of Wayne

Borough of Wanaque

Borough of Ringwood/ Borough of Wanaque Borough of Ringwood Township of Wayne

MOST RECENT MODEL DATE

August 2013 October 1987 October 1987 October 1987

February 1979 August 2013 December 1978 December 1978 August 2013 December 1983 October 1987 August 2013 December 1978 December 1978 December 1978 December 1978 March 1977 August 2013 February 1979 December 1983

March 1977 March 1979

October 1987 August 2013

December 1983

August 2013 December 1978 December 1983

TABLE 4 - MODEL DATES FOR RIVERINE FLOODING-continued

STREAM NAME

COMMUNITY

MOST RECENT MODEL DATE

Township of West Milford October 1987 Longhouse Creek MacDonald Brook City of Passaic February 1977 Meadow Brook Borough of Wanaque/ Borough of Ringwood August 2013 Borough of Ringwood Meadow Brook Branch 2 December 1978 City of Paterson, Borough of Haledon Molly Ann Brook September 2006 Borough of Prospect Park Borough of Haledon, Borough of North Molly Ann Brook Haledon August 2013 February 1979 Molly Ann Brook Tributary 3 Borough of North Haledon Molly Ann Brook Tributary 4 February 1979 Borough of North Haledon Molly Ann Brook Tributary 6 Borough of North Haledon February 1979 Morsetown Brook Township of West Milford October 1987 Naachtpunkt Brook (Lower Reach) Township of Wayne/ December 1983 Borough of Totowa Township of Wayne December 1983 Naachtpunkt Brook (Upper Reach) Oakwood Lake Brook Borough of Bloomingdale December 1983 Township of Wayne Packanack Brook August 2013 City of Clifton, City of Passaic, Passaic River April 2012 City of Paterson, Borough of Hawthorne Borough of Prospect Park, Borough of Totowa, Borough of Woodland Park (formerly Borough of West Paterson) Township of Little Falls, Township of Wayne Borough of Woodland Park Pearl Brook September 1978 Borough of Woodland Park/ Peckman River Township of Little Falls August 2013 Borough of Pompton Lakes, August 2013/ Pequannock River Borough of Bloomingdale, September 2014 Township of West Milford August 2013 Township of Wayne August 2013 Pompton River Pompton River Unnamed Tributary Township of Wayne August 2013 Borough of Pompton Lakes/ Post Brook and Rainbow Valley Lake December 1983 Borough of Wanaque Township of West Milford Post Brook (West Milford) October 1987 Borough of Wanaque Post Brook Branch 1 December 1983 Post Brook Branch 2 Borough of Wanaque December 1983 Township of West Milford Post Brook Branch 3 October 1987 Township of West Milford Post Brook Branch 4 October 1987 Ramapo River Township of Wayne/ Borough of Pompton Lakes August 2013 **Ringwood Creek** Borough of Ringwood August 2013 Ringwood Creek Branch 1 Borough of Ringwood December 1978

TABLE 4 - MODEL DATES FOR RIVERINE FLOODING-continued

STREAM NAME	COMMUNITY	<u>MOST RECENT</u> MODEL DATE
		<u>modele drite</u>
Singac Brook	Township of Wayne/	
	Borough of Totowa	August 2013
Slippery Rock Brook	City of Paterson/	September 1978
	Borough of Woodland Park	
Squaw Brook	Borough of North Haledon	August 2013
Stephens Lake Brook	Borough of Ringwood	December 1978
Stephens Lake Brook Branch 1	Borough of Ringwood	December 1978
Stephens Lake Brook Branch 2	Borough of Ringwood/	December 1978
	Borough of Wanaque	
Third River	City of Clifton/	
	Borough of Woodland Park	August 2013
Tributary 1 to Posts Brook	Borough of Bloomingdale	December 1983
Tributary 2 to Posts Brook	Borough of Bloomingdale	December 1983
Tributary 1 to Singac Brook	Township of Wayne	December 1983
Tributary 3 to Singac Brook	Township of Wayne	December 1983
Tributary to Van Dam Brook	Borough of Bloomingdale	December 1983
Van Dam Brook	Borough of Bloomingdale	December 1983
Wabash Brook	City of Clifton	February 1979
Wanaque River	Borough of Pompton Lakes/	
	Borough of Wanaque	August 2013
Weasel Brook	City of Passaic, City of Clifton	August 2013
West Brook Reach 1	Borough of Wanaque/	
	Borough of Ringwood/	
	Township of West Milford	August 2013
West Brook Reach 2	Township of West Milford	October 1987
West Brook Branch 7	Township of West Milford	October 1987

This FIS also incorporates the determinations of letters issued by FEMA resulting in map changes (Letter of Map Revision [LOMR], as shown in Table 5, "Letters of Map Change."

TABLE 5 - LETTERS OF MAP CHANGE

Community	Flooding Source(s)/Project	Date Issued	Type
-	Identifier		•••
Township of Little	Peckman River, Great Notch Brook,	August 14, 2007	LOMR
Falls and Borough of	Dowling Brook; updated hydraulic		
Woodland Park	analysis, hydrologic analysis, and		
(formerly West	topographic data		
Deterson			

Paterson)

TABLE 5 - LETTERS OF MAP CHANGE (continued)

Community	Flooding Source(s)/Project Identifier	Date Issued	<u>Type</u>
-----------	--	-------------	-------------

Borough of Wanaque Posts Brook - Lower Twin Lake November 18, 2008 LOMR

Numerous flooding sources in the county were studied by approximate methods. Approximate analyses were used to study those areas having a low development potential or minimal flood hazards. There are also streams with Limited Detail studies in areas having low development or minimal flood hazards. The scope and methods of study were proposed to, and agreed upon by, FEMA and Passaic County.

2.2 Community Description

Passaic County is located in the northern central and northeast part of New Jersey. It is bordered to the northeast by Orange and Rockland Counties, New York, to the northwest by Sussex County, New Jersey, to the west by Morris County, New Jersey, to the South by Essex County, New Jersey, and to the east by Bergen County, New Jersey. It is also bounded in several locations by the Passaic and Pequannock Rivers, and spans 185 square miles. The population of Passaic County was 501,226 in 2010 (U.S. Census Bureau, 2010). Several major highways span Passaic County, including Interstate 80, the Garden State Parkway, and Interstate 287. Several rail and bus lines also pass through the County. The southern half of Passaic County is urban and densely populated, while the northern half of the County is predominantly rural.

Historically, the southern half of Passaic County was a largely industrial area, and while most related activity has since ceased, it remains a densely populated part of the greater New York metropolitan area. The northern half of Passaic County is far less populated, with a multitude of lakes, streams and recreational areas. Several large State parks and wildlife management areas are located in this part of Passaic County.

The terrain of Passaic County is greatly varied. In the southern half of the County the terrain is quite flat, with several cities and highly developed areas, while the northern half of the County is very mountainous. The highest point in Passaic County is 1,450 feet above sea level, in the northernmost municipality of West Milford; the lowest point is 30 feet above sea level, in the southern municipality of Clifton.

2.3 Principal Flood Problems

The urban parts of Passaic County are vulnerable to severe flooding and floodrelated damage. Low-lying areas throughout Passaic County are subject to periodic flooding caused by the overflow of streams. Flooding from the Passaic River affects the communities of Bloomingdale, Hawthorne, Little Falls, Passaic, Paterson, Prospect Park, Totowa, Wayne and Woodland Park (formerly West Paterson). This is due to the establishment of highly developed areas adjacent to the Passaic River. Flooding from Molly Ann Brook affects the communities of Haledon, North Haledon, Paterson and Prospect Park. Flooding from the Pequannock River affects low-lying areas of Bloomingdale and Pompton Lakes. Flooding from the Wanaque River affects Pompton Lakes, Ringwood and Wanaque.

Flooding in Passaic County is the result of heavy rainfall produced by hurricanes moving up the coast, large frontal storms from the west and south, and local thunderstorms. One of the largest storms on record occurred in 1903, with an estimated peak discharge at the mouth of the Passaic River of 39,800 cubic feet per second (cfs), and a recurrence interval of approximately 100 years (U.S. Department of the Interior, 1904). Other historically large storms that caused widespread flooding and damage occurred in 1902, 1936, 1945, 1951, and 1955. More recently, major flooding occurred along the Passaic in 1968, 1971, 1972, 1973, two in 1975, 1984, 1992, 1999, 2005, 2007, and 2010, all of which warranted Federal Disaster declarations.

The Passaic River also experienced flooding as a result of Hurricane Irene. Preliminary gage recordings from August 30, 2011, at the Little Falls gage exceeded the 1984 storm event (the USACE calibrated a HEC-1 model and a UNET model to this event) flow and gage height at 20,800 cfs and 133.39 feet NAVD88, respectively (<u>http://waterdata.usgs.gov/nwis/uv/?site_no=01389500</u> &agency_cd=USGS). However, storms later than 1984 were used for both hydroloic and hydraulic model calibrations.

Smaller tributaries in Passaic County also cause flooding in individual communities. The Borough of Bloomingdale experiences additional flooding from Cold Spring Brook, Oakwood Lake Brook, Posts Brook Tributaries 1 and 2, Van Dam Brook and the Van Dam Brook Tributary. Low-lying areas above and below Oak Street are subject to flooding during heavy rainstorms.

The City of Clifton experiences additional flooding from the Third River, Wabash Brook, Plog Brook, Weasel Brook, Weasel Brook Branch and Weasel Brook Branch 3-5-2. Various stream encroachment projects, inadequate culverts, and low-lying areas contribute to flooding concerns during heavy rainstorms. The Third River causes flooding from the corporate limits to U.S. Highway 46 in the western section of the City. The Passaic River backwater influence also extends significantly up the Third River. Weasel Brook and Weasel Brook Branch cause flooding in the low-lying area just upstream of Conrail. Flooding from Plog Brook was alleviated in the area immediately downstream from Van Houten Avenue through a pipe. The system has been supplemented with another pipe system that can contain the 1-percent-annual-chance (100-year) flood.

The Borough of Haledon experiences flooding in low-lying areas along Molly Ann Brook, aggravated by the contribution of flow from Molly Ann Brook Tributary 2 at the Church Street Bridge. Street flooding has also occurred at Haledon Avenue, North 16th Street and Church Street. Flooding has occurred at the apartment complex near Church Street and Richardson Street.

The Borough of Hawthorne experiences additional flooding from Goffle Brook and Deep Brook. Low-lying areas and an inadequate culvert located under the

industrial complex north of Wagaraw Road causes flow to escape the banks and pass over Wagaraw Road. Flooding also occurs at the confluence of Deep Brook and Goffle Brook at the intersection of Goffle Road and Goffle Hill Road.

The Borough of Little Falls experiences additional flooding from the Peckman River and Great Notch Brook. Flooding occurs mainly due to low-lying areas and insufficient culvert and bridge openings, particularly in the residential areas having steep slopes.

The Borough of North Haledon experiences moderate flooding in the area adjacent to High Mountain Road, and streams in the Borough exhibit potential bank degradation and erosion due to high velocity flows in the steep channels.

The City of Passaic experiences additional flooding from Weasel Brook and MacDonald Brook. Flooding generally occurs in low-lying areas adjacent to these streams.

The City of Paterson has experienced large inundation areas at Dundee Dam on the Passaic River. In addition, Slippery Rock Brook causes flooding between Route 80 and the Passaic River due to small bridge openings and other manmade channel constrictions, as well as the accumulation of debris. Several areas throughout the City have been flooded due to heavy rainfall and inadequate storm sewer capacity. Two locations with extensive flooding are East 33rd Street between McLean Boulevard and Park Avenue, and Graham Avenue between Twelfth Avenue and Broadway.

The Borough of Pompton Lakes experiences additional flooding from the Ramapo River, Posts Brook and Acid Brook, mainly in low-lying areas adjacent to these streams.

The Borough of Ringwood experiences additional flooding from Ringwood Creek, Cupsaw Brook and West Brook.

The Borough of Totowa is subject to flooding from the Passaic River in the lowlying areas near Totowa Road and Holy Sepulcher Cemetery. Limited development along the Singac Brook and Naachtpunkt Brook and steep topography along the Passaic River, however, have limited flooding within the Borough.

The Borough of Wanaque experiences additional flooding from Post Brook, Meadow Brook and High Mountain Brook. Flooding generally occurs in low-lying areas along these streams. The flood of May 1968 damaged streets as well as residential and commercial buildings, and also affected the Borough's Haskell Sewage Treatment Plant. USGS stream flow and water surface records indicated that this flood would also have discharged flow equivalent to a 5-percent-annualchance (20-year) storm from Raymond Dam, had the water supply reservoir not been below capacity at the time of the event.

The Township of Wayne is subject to additional flooding from Haycock Brook, Jones Brook, Naachtpunkt Brook, the Pompton River, the Ramapo River, Singac Brook and Singac Brook Tributaries 1 and 3. The Township of West Milford is subject to additional flooding from Belcher Creek and Morsetown Brook in the low-lying areas, and at Union Valley Road in the vicinity. Low-lying areas adjacent to Longhouse Creek, Cooley Brook, Green Brook and Branches of Belcher Creek are also subject to flooding.

The Borough of Woodland Park (formerly West Paterson) experiences additional flooding from the Peckman River and the downstream portion of Dowling Brook in low-lying areas. Other watercourses within the Borough have limited development and relatively steep slopes, minimizing potential flooding and damage. On July 23, 1945, 7.6 inches of rainfall fell in 17 hours, causing a section of earth embankment on Barbour's Pond to wash out. The stored capacity of 60 million gallons was discharged into the New Street Reservoir, whose multiple-arch dam was quickly overtopped by approximately 2 feet. Extensive damage was sustained in the general area; however, this incident was considered a structural failure and not a recurring event.

2.4 Flood Protection Measures

There are numerous dams located on streams throughout Passaic County, which can affect flood flows. However, they are not managed as flood protection structures. The effects of these dams are therefore not incorporated into the flood hazard mapping for this FIS. All jurisdictions within Passaic County restrict building in floodplain areas in accordance with FEMA land-use regulation requirements, and enforce the rules, regulations and minimum standards concerning development in flood hazard areas, as set forth by the NJDEP, Division of Water Resources. Development in areas of Passaic County located within the Highlands Preservation Area is further restricted in areas of steep slope or close proximity to water bodies.

The Borough of Haledon, Borough of Hawthorn and City of Passaic, among others, participate in a clean-up program of various streams following significant storms, in order to remove debris to help avoid the possible worsening of present and future flood conditions.

According to the *Passaic County, New Jersey Multi-Jurisdictional Hazard Mitigation Plan*, dated August 12, 2010, the following mitigation actions have been identified by each community. For more information regarding the Passaic County, NJ Hazard Mitigation Plan please visit the following website: http://www.passaiccountynj.org/index.aspx?NID=1059.

Borough of Bloomfield:

- -Backup power
- -Acquisition/elevation of 20 floodprone properties
- -Construct new and upgrade existing culverts, retention basinsand flood ponds
- -Floodproofing Repetitive Loss properties
- -Install river gage on the Pequannock River

City of Clifton :

- -Backup power
- -Installation of stormwater management culverts
- -Relocate Passaic Valley Sewage Pumping Station
- -Stormwater management system upgrade along
- Route 3 and Route 46
- -Upgrade culvert on Sylvan Avenue

Borough of Haledon:

- -Backup power
- -Public Warning/Alert System
- -Floodproof eight floodprone properties

Borough of Hawthorne:

- -Backup power
- -Elevate seven sewer and water pump stations along the Passaic River above the floodplain
- -Re-channel Goffle Brook into the Passaic River
- -Stream stabilization and bank augmentation on Goffle Brook

Township of Little Falls:

- -Backup power
- -Stream bank stabilization along the Peckman River
- -Upgrade and improvement of embankment wall located along Cedar Grove Road
- -Upgrade of stormwater pumping station facilitating water removal
- -Elevation of identified properties
- -Early warning system

Borough of North Haledon:

- -Backup power
- -Elevation of utilities out of floodprone basement of Municipal Building
- -Stream bank stabilization and bank augmentation along Molly Ann Brook
- -Inundation study for Yahn's Pond Dam

City of Passaic:

- -Backup power
- -Stream bank stabilization and augmentation along the Passaic River
- -Code update
- -Elevation/Flood-proofing of four repetitive loss properties

City of Paterson:

- -Backup power
- -Riverbank augmentation of the Passaic River
- -Floodproof Public Safety Building
- -Acquisition of identified homes

Borough of Pompton Lakes:

- -Backup power
- -Engineering study to determine mitigation actions along identified streets
- -Acquisition of identified properties
- -Improved drainage along Sunset Road
- -River silt and snag removal
- -Install check valves on storm drains
- -Purchase Vac-Truck for storm drain cleaning and related projects
- -Riverbank restoration on the Wanaque, Pequannock and Ramapo Rivers
- -Annual river clean-up on the Wanaque, Pequannock and Ramapo Rivers
- -Purchase articulating bucket truck for downed or other tree work
- -Debris removal at the confluence of the rivers
- -Install local river gage system
 - -Determine properties at risk due to failure of the Ramapo River Dam

Borough of Prospect Park:

-Backup power

-Installation of back-flow valves on storm-water outflow pipes to prevent infiltration of sewage system on Short Street near East Main Street

Borough of Ringwood:

- -Backup power
- -Retrofit impact resistant shutters to windows and doors on Municipal Building
- -Floodproof utilities in Municipal Building
- -Hazard threat recognition regarding mapping and capping of iron mines
- -Upgrade and improvement of stormwater culverts along McGee Road
- -Dam Inundation study of Monksville Dam

Borough of Totowa:

- -Backup power
- -Engineering study to determine best mitigation action of Fire Department
- -Engineering study to determine risk of dam failure
- -Engineering study to determine route of flooding and appropriate mitigation action identified properties
- -Acquisition of identified properties
- -Rebuild and relocate Williams Street Sewer Pumping Station
- -Rehabilitation and install new pump for stormwater for Lower Borough area

-Rebuild Riverview Pump Station -Install early warning system

Borough of Wanaque:

-Backup power

-Dredge/deepen/widen Post Brook/Post Brook Tributary

-Stormwater management culvert upgrade

-Floodproof floodprone identified properties

-Determine properties at risk due to failure of Monksville

Dam and Raymond Dam

Township of Wayne:

-Backup power

-Acquisition of identified properties

-Old Wayne Dike upgrade

-Planning and Zoning on-going project to review and revise regulations

Township of West Milford:

-Backup power

-Upgrade and improve stormwater culverts

-Armor Lower Pond Dam at Bubbling Spring

-Stream bank stabilization of banks of High Crest Dam

-Replace Crescent Road Bridge, High Crest Drive Bridge

-Dredge Belcher Creek

Borough of Woodland Park (formerly West Paterson):

-Backup power

- -Construct a bypass tunnel from the Peckman River to divert water and avoid flash flooding
- -Construct dikes, improve conveyance, flood tunnel along the Passaic River
- -Install emergency flood warning system
- -Elevate and/or floodproof repetitive
- loss properties
- -Determine properties at risk due to New Street Reservoir Dam

Other flood protection measures are listed below:

In the City of Clifton, a major portion of Plog Brook is piped through a series of concrete pipes to alleviate much of the flooding along this small stream. The Broad Street Bridge over the Third River was rebuilt and has reduced flooding. A diked ponding area upstream of Conrail along Weasel Brook has been constructed, and information on this project was included in the flood alleviation plan for Weasel Brook entitled <u>Report on the Works and Improvements for Alleviation of Floods on Weasel</u>, Wabash and MacDonald Brooks, Clifton, New Jersey (City of Clifton, 1947). Additionally, a number of streams in the City have been piped at various times in the past to reduce flooding.

In the City of Paterson, the Hillcrest Flood Relief Project was built by the City in 1957 to relieve flooding in Molly Ann Brook. It consists of an overflow weir intake leading to a 108-inch conduit that conveys excess Molly Ann Brook flow to the Passaic River below Great Falls. The project also includes two overflow relief sewers and a bypass culvert around a building constructed over the brook.

Presently, the USACE is undertaking a long-term flood control project along Molly Ann Brook in the City of Paterson and Borough of Haledon. This project involves channel improvements, bridge modifications or replacements, and the removal of one structure (a warehouse). Channel improvements include widening, deepening, and the addition of concrete cantilever retaining walls and U-walls, as well as bank reinforcement where necessary. The length of this project is approximately 2.5 miles and it extends from its confluence with the Passaic River in the City of Paterson to Church Street in the Borough of Haledon. This project is designed to provide protection from a 2-percent-annual-chance (50-year) storm. The effects of this project have been incorporated into the [*date*] FIS.

3.0 ENGINEERING METHODS

For the flooding sources studied in detail in the county, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this FIS. Flood events of a magnitude which are expected to be equaled or exceeded once on the average during any 10-, 50-, 100-, or 500-year period (recurrence interval) have been selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 50-, 100-, and 500-year floods, have a 10-, 2-, 1-, and 0.2percent chance, respectively, of being equaled or exceeded during any year. Although the recurrence interval represents the long term average period between floods of a specific magnitude, rare floods could occur at short intervals or even within the same year. The risk of experiencing a rare flood increases when periods greater than 1 year are considered. For example, the risk of having a flood which equals or exceeds the 100-year flood (1-percent chance of annual exceedence) in any 50-year period is approximately 40 percent (4 in 10), and, for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the county at the time of completion of this FIS. Maps and flood elevations will be amended periodically to reflect future changes.

3.1 Hydrologic Analyses

Hydrologic analyses were carried out to establish the peak discharge-frequency relationships for the flooding sources studied in detail affecting the county.

Prior to the September 27, 2007, FIS, the hydrologic procedures used to establish peak discharge-frequency relationships for each flooding source studied by detailed approximate methods in the county included Special Report 38 (U.S. Department of the Interior, 1974), drainage-discharge ratio development, Rational Method and Gage Analysis.

Special Report 38, developed by the NJDEP in cooperation with the USGS, uses a series of mathematical and graphical relationships to estimate discharge-frequency data. Various parameters such as drainage area, main channel slope, surface storage area, and an index of manmade impervious cover based on basin population and development conditions are used in this type of analysis.

The drainage-discharge ratio is determined by comparing a known discharge at a known point (gaging station) and the discharge at the area in question. The following equation was used at several streams in Passaic County to determine this relationship:

$$Q_1 / Q_2 = (A_1 / A_2)^T$$
,

where Q_1 and A_1 are the known discharge from a gaging station and the associated drainage area; Q_2 and A_2 are the discharge to be calculated and the associated drainage area, and T is the transfer exponent (Water Resources Council, 1967).

The Rational Method is used for streams with a drainage area less than approximately 1 square mile. The equation for the Rational Method is:

$$Q = CIA,$$

where Q is the discharge to be calculated, C is the runoff coefficient (dependent on land use), I is the rainfall intensity for the design storm, and A is the drainage area.

Gage analysis fits annual peak flow data to a statistical distribution (Log Pearson Type III) to determine a discharge frequency relationship.

In the Borough of Bloomingdale, Special Report 38 was used to estimate the peak discharges for Cold Spring Brook, Van Dam Brook, Oakwood Lake Brook and Van Dam Brook Tributary. Discharges for Posts Brook Tributaries 1 and 2 were obtained from the FIS for the Borough of Wanaque, which analyzed the hydraulic characteristics of several spillways throughout the basin area and routed hydrographs for sub-areas to determine peak flow rates.

In the City of Clifton, Special Report 38 was used to determine the discharges using a correlation of data developed by the USGS for the Second River in Belleville, New Jersey; Weasel Brook Branch and Wabash Brook.

In the Borough of Hawthorne, peak discharges for Goffle Brook and Deep Brook were developed using Special Report 38 because both streams are ungaged.

In the Borough of Little Falls, peak discharges for the Peckman River and Great Notch Brook were developed using Special Report 38 because both streams are ungaged.

In the Borough of North Haledon, streams with drainage areas greater than 1 square mile were determined using Special Report 38, while streams having a drainage area less than 1 square mile were determined using the Rational Method.

In the City of Passaic, the log-Pearson Type III method was used to determine discharges for Weasel Brook (Water Resources Council, March 1976), as mentioned above for analysis in the City of Clifton. However, because this study was conducted prior to the study in Clifton, the unrevised drainage area of 4.45 square miles was used. Data obtained for Weasel Brook (Water Resources Council, March 1976) was also used to determine discharges for MacDonald Brook.

In the City of Paterson, discharges for Slippery Rock Brook were computed using the drainage-discharge ratio.

In the Borough of Ringwood, discharges for the 10-, 2-, and 1-percent-annual-chance storms were determined using Special Report 38 for Burnt Meadow Brook, Stephens Lake Brook, High Mountain Brook and their various branches. For areas with a drainage area less than 1 square mile, the Rational Method was used. A log-Pearson Type III analysis was used to determine the 0.2-percent-annual-chance storm discharges for the above-mentioned rivers. Discharges in the Wanaque Reservoir were computed through the use of a linear regression model of the reservoir developed from gaged inflows and outflows, based on the assumption that the reservoir is full at the start of the storm event.

In the Borough of Totowa, discharges were determined using Special Report 38 for Naachtpunkt Brook. These discharges were then modified to accurately represent the actual characteristics of the area.

In the Borough of Wanaque, Special Report 38 was used to determine the 10-, 2-, and 1-percent-annual-chance peak discharges for High Mountain Brook, High Mountain Brook Branch 2, Post Brook, Rainbow Valley Lake, Post Brook Branches 1 and 2. A log-Pearson Type III analysis was used to determine the 0.2-percent-annual-chance discharges of these streams. Discharges for Wanaque Reservoir were determined using a linear regression model of the Reservoir as described in the Ringwood analysis above.

In the Township of Wayne, Special Report 38 was used to determine the 10-, 2-, and 1-percent-annual-chance storm discharges for Jones Brook, Naachtpunkt Brook (Main and Upper Reaches), and Singac Brook Tributaries 1 and 3. A log-Pearson Type III analysis was used to determine the 0.2-percent-annual-chance storm discharges. Data for Packanack Lake was obtained from the original FIS for Wayne.

In the Township of West Milford, Special Report 38 was used to determine 10-, 2-, and 1-percent-annual-chance discharges for Longhouse Creek, Cooley Brook, Green Brook, and Morsetown Brook. A log-Pearson Type III analysis was used to develop water surface profiles in Greenwood Lake.

In the Borough of Woodland Park (formerly West Paterson), discharges for the Peckman River were determined using Special Report 38. Discharges for Pearl Brook, Slippery Rock Brook and Great Notch Brook were determined using the Rational Method.

For the September 27, 2007, FIS, the following analyses were conducted:

Information on the methods used to determine peak discharge-frequency relationships for the streams restudied as part of this countywide FIS is shown below.

All revised discharges for Molly Ann Brook, from the confluence with the Passaic River in the City of Paterson to the area downstream of County Highway 677 in the Borough of Haledon, were calculated in accordance with procedures outlined in the USGS publication entitled "Nationwide Summary of U.S. Geological Survey Regional Regression Equations for Estimating Magnitude and Frequency of Floods for Ungaged Sites, 1993," also referred to as Water-Resources Investigations (WRI) Report 94-4002 (U.S. Department of the Interior, 1994).

Flow locations were selected at various points along the reaches of the stream. Locations were first selected based on prior documented FEMA Flow Locations for prior studies of the drainage basin and USACE flow locations for the ongoing Molly Ann Brook Flood Control Project (USACE, 1993). Additional flow locations were added along the stream to provide a uniform drainage analysis of the study area.

Based on WRI Report 94-4002, the variables governing the peak stream flows for each of the flow locations are Drainage Area, Main Channel Slope, Population Density and Surface Storage Index. With the flow locations selected, the drainage area to each of the locations was delineated based on the USGS 7 ¹/₂ minute quadrangle map.

The Main Channel Slope was measured between points which are 10 percent and 85 percent of the main channel length upstream from the study site. This was measured based on the USGS 7 ¹/₂ minute quadrangle map (U.S. Department of the Interior, 1972).

The Population Density was calculated based on Census 2000 Data obtained from the New Jersey Department of Labor and Workforce Development (2001). First, the Population Density was calculated for each overall community area. A weighted value was then calculated for each incremental drainage area based on estimated community coverage.

The Surface Storage Index is the percentage of the drainage area occupied by lakes and swamps. There are two reservoirs, Oldham Pond and Haledon Reservoir, located on Molly Ann Brook upstream of the detail study limit. Neither reservoir is a significant surcharge holdout. Therefore, this study – and the USACE study as well – neglects any detention effects of these ponds. Their areas, however, are reflected in the Surface Storage Index.

One gage, USGS No. 01389765 at Overlook Avenue, North Haledon (U.S. Department of the Interior, retrieved June 6, 2006), was located along Molly Ann Brook. The historical annual peak rainfall was downloaded from the USGS website in the form of a WATSTORE file. A PEAKFQ analysis was run in accordance with the "Users Manual for Program PEAKFQ, Annual Flood Frequency Analysis Using Bulletin 17B Guidelines (U.S. Department of the Interior, 1998)."

A regression analysis was then performed at each of the flow locations in accordance with WRI Report 94-4002 to calculate flood discharges. The regression analysis was performed using the National Flood Frequency Program (NFF) (U.S. Department of the Interior, 2002). This program employs the New Jersey regional regression equations established in Special Report 38 to calculate discharges for the 50-, 20-, 10-, 4-, 2-, and 1-percent-annual-chance flood. These equations are applicable to rural and urbanized areas because they account for basin development through a population density variable. The discharges for the 0.2-percent-annual-chance flood are extrapolated by the NFF. This involves fitting a log-Pearson Type III curve to the 50- to 1-percent-annual-chance flood discharges, and extrapolation of this curve of the 0.2-percent-annual-chance flood discharge.

The governing variables along with the PEAKFQ discharges were inputted into the program. At the gage location, the PEAKFQ discharges were weighed against the regression analysis at that gage location. For each flow location within 50 percent of the drainage area upstream or downstream of a gage location, the calculated gage flow was weighed against the calculated regression analysis. For flow locations outside of the 50-percent range of a gage location, the calculated regression flow is utilized as the discharge for the flow location.

Finally, a discharge comparison was performed between the effective FIS, USACE flood protection study discharges and this study. This study exhibits higher flows that the effective FIS in part due to the various hydrologic methodologies under comparison and the significant increase in basin development of the span of 20 or more years. The flood bypass culvert located at Crosby Avenue in Haledon was not considered in this hydrologic study; however, its effect is reflected in the hydraulic analysis.

For the [*date*] FIS the following analyses were conducted:

Flood flow frequencies for Acid Brook, Branch 3-5-2 Weasel Brook, Buttermilk Falls, Cupsaw Brook, Dowling Brook, Haycock Brook, High Mountain Brook (upstream), Molly Ann Brook, the Pequannock River between Oak Ridge Reservoir and the Charlotteburg Reservoir, Singac Brook, Weasel Brook and West Brook were computed using USGS Regional Regression equations for the State of New Jersey. For Acid Brook, Molly Ann Brook, Singac Brook, and West Brook, NJDEP's 2007 Land Use/Land Cover data, available at <u>http://www.state.nj.us/dep/gis/lulc07shp.html</u>, were used to determine storage. For Buttermilk Falls, Cupsaw Brook, Dowling Brook, Haycock Brook, High Mountain Brook, the Pequannock River between Oak Ridge Reservoir and the Charlotteburg Reservoir, Branch 3-5-2, Weasel Brook and Weasel Brook, an online tool – StreamStats - developed by the USGS, was used (<u>http://water.usgs.gov/osw/streamstats/new_jersey.html</u>).

HEC-HMS (version 3.4) was used to develop peak discharge frequency relationships for Meadow Brook, Packanack Brook, Pompton River, and Pompton River UNT (Unnamed Tributary). Rainfall data for different recurrence intervals were obtained from NOAA Atlas 14 (<u>http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=nj</u>) and land use data for the watershed

areas within the New Jersey boundary were obtained from NJDEP (Soils data were obtained from the Natural Resources Conservation Service [NRCS]

(http://www.nrcs.usda.gov/wps/portal/nrcs/site/soils/home/) The NRCS curve number method was used to estimate loss and the Soil Conservation Service unit hydrograph was used for flow transformation. Routing was performed by Muskingum Cunge and Modified Puls method. Recession base flow was simulated for watersheds draining into the Ramapo River and the Pequannock River. For other streams, base flow was not considered.

A HEC-HMS model of the Pompton River Basin was calibrated to four storm events including Hurricane Irene (August 27-29, 2011) (RAMPP, 2013). The hydrology of the Pompton River watershed is significantly influenced by numerous lakes and reservoirs with varying degrees of storage capacity and flow attenuation characteristics. The existing model development by the RAMPP team only includes storage areas that are capable of affecting 1-percent-annual-chance discharges. The following reservoirs are included in the basin model:

- Charlotteburg Reservoir
- Clinton Reservoir
- Echo Lake Spillway Dam
- Greenwood Lake
- Monksville Reservoir
- Oak Ridge Reservoir
- Wanaque Reservoir

The Canistear Reservoir was not modeled because it is located on a tributary headwater well upstream of the main river system and was identified as providing little storage by the USACE (1995).

Flood flow frequencies for the Pequannock River, between the downstream West Milford corporate limits and the confluence with Van Dam Brook, were based on the statistical analysis of USGS gage data of gage 01382500 at Macopin Intake Dam using a systematic record of 73 years. Flood flow frequencies for Ringwood Creek were based on a statistical analysis of USGS gage data of gage 01384500 near Wanaque. All procedures were performed in accordance with the USGS "Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams" Scientific Investigations Report 2009-5167 (SIR 2009-5167), by Watson and Schopp. As indicated in this report, Passaic County is located in the non-Coastal Plain Region; therefore, the generalized skew and standard error were 0.41 and 0.53, respectively. SIR 2009-5167 also indicates this portion of Passaic County to be located in the Glaciated Valley and Ridge flood-frequency region, so an exponent, b, of 0.59 was used for estimating flood frequencies for ungaged sites along the stream.

Flood flow frequencies for the Ramapo River and the Pompton River in Passaic County were developed from the calibrated unsteady HEC-RAS model. The hydrographs input into the unsteady HEC-RAS model were developed using the HEC-HMS model. The details on calibration of the unsteady HEC-RAS model can be found in the Hydraulics section of this report.

Flood flow frequencies for the Third River in Passaic County (with nodes located upstream of confluence with the Passaic River, at the Garden State Parkway, and just downstream of Grove Street) are unchanged from the previous effective FIS dated September 28, 2007, for the community. As specified in that study, these discharges were computed using the USGS Special Report 38.

Flood flow frequencies for the Wanaque River were unchanged from the previous effective FIS dated September 28, 2007. These were calculated using log-Pearson Type III equations.

RAMPP completed hydrologic modeling for the Passaic River using HEC-HMS 3.5 (USACE) in 2013. The study consisted of five HEC-HMS models (Pompton, Rockaway, Whippany, Upper Passaic and Central Passaic Watersheds) linked to four approximate unsteady state and one detailed unsteady state HEC-RAS models. The detailed unsteady model was further linked below the Little Falls USGS Gaging Station to two more HEC-HMS models (Saddle and Lower Passaic Watersheds).

This combined HEC-HMS/unsteady state HEC-RAS modeling system was developed to accommodate the unique storage and flow conditions, which can include flow reversals in the portion of Passaic between the USGS gages at Chatham and Little Falls (Central Passaic Watershed). The calibration of individual HEC-HMS basin models was completed with available gage data. An unsteady state detailed HEC-RAS model, however, completes the hydrologic model calibration for the modeling; it relies on the stage data for USGS gages located along the Passaic River.

The two HEC-HMS basin models (Saddle and Lower Passaic Watersheds) below the USGS gage at Little Falls rely on the discharge hydrograph from the upstream detailed unsteady state HEC-RAS model. Only a calibration of the Saddle Basin HEC-HMS model was completed for this portion of the study; no recent gage data were available for use in the calibration of the Lower Passaic HEC-HMS model.

Individual HEC-HMS basin models are most accurate at the downstream gage locations used in their calibration. There are numerous lakes and reservoirs in those basins that are not reflected in these models, but which may be of some local importance. The effects of these features in the basin models were accounted for with adjustments to curve numbers (CNs) and lag times. As a consequence, subbasins located upstream of gage locations may not accurately predict 1-percent-annual-chance flows within these HEC-HMS models. The final calibration of the model is only valid for the HEC-HMS/unsteady HEC-RAS model linkage, and as such, the final hydrologic model calibration is only valid for the discharges predicted along the 41.2 Passaic River study reach using the unsteady state HEC-RAS model.

In addition, the New Jersey Flood Hazard Area Design Flood (NJFHADF) was computed for the USGS gaging stations and the additional flow locations. The NJFHADF is equal to the 1-percent-annual-chance flood plus an additional 25 percent in flow, not to exceed the 0.2-percent-annual-chance flood. The NJFHADF

boundary is intended to regulate disturbance to the land and vegetation within the flood hazard area of a water body. This regulation is set forth by the State of New Jersey Flood Hazard Area Control Act Rules N.J.A.C. 7:13.

A summary of the drainage area-peak discharge relationships for all the streams studied by detailed methods is shown in Table 6, "Summary of Discharges."

FLOODING SOURCE	DRAINAGE AREA		PEAK DISCH	ARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
ACID BROOK					
At mouth 2,300 feet upstream of I-	0.91	200	337	407/5081	588
2,500 leet upstream of 1- 287	0.83	199	339	410/513 ¹	598
BELCHER CREEK					
At mouth	14.30	1,290	2,110	2,590	4,610
At confluence with					
Cooley Brook	10.60	970	1,590	1,950	3,470
At confluence with	0.0	= 10	1 220	1 510	2 500
Morsetown Brook	8.0	740	1,230	1,510	2,700
At Pinecliff Lake	7.0	(10)	1.0(0	1 210	2 220
spillway	7.0	640 750	1,060	1,310	2,330
At Pinecliff Lake At confluence with	5.3	750	1,240	1,540	2,740
Belcher Creek Branch 2	3.0	480	820	1,030	1,830
At Madison Avenue	2.6	430	730	920	1,630
At Morris Avenue	2.0	330	560	920 710	1,050
At Months Avenue	1.0	550	500	/10	1,200
BELCHER CREEK					
BRANCH 1					
At mouth	0.30	100	140	160	280
BELCHER CREEK					
BRANCH 2					
At mouth	2.50	370	630	790	1,380
At confluence with	2.50	570	050	750	1,300
Belcher Creek Branch 1	0.50	170	220	260	460

TABLE 6 – SUMMARY OF DISCHARGES

	DRAINAGE	RAINAGE			
FLOODING SOURCE	AREA		PEAK DISCHA		
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT
BRANCH, WEASEL BROOK Upstream of confluence					
with Weasel Brook Approximately 1,500 feet downstream of	1.05	385	610	745	1,180
Circle Avenue	0.59	250	395	485	765
BRANCH 3-5-2, WEASEL BROOK Upstream of confluence with Weasel Brook	0.66	299	481	568	789
BURNT MEADOW BROOK					
At mouth	4.05	520	880	1,110	1,670
At Magee Road At confluence with Burnt	3.54	510	860	1,080	1,610
Meadow Brook Branch 3	2.65	360	620	790	1,180
BURNT MEADOW BROOK BRANCH 5					
At mouth Entering Harrison Mt.	0.22	50	80	90	180
Lake	0.10	45	70	80	165
BUTTERMILK FALLS (FALLS BROOK) At confluence of Molly Ann Brook	0.43	201	307	355/444 ¹	475
COLD SPRING BROOK					
At its confluence with Pequannock River	1.49	128	224	279	421
COOLEY BROOK At mouth At confluence with	3.70	560	950	1,210	2,120
Green Brook	1.60	260	460	590	1,030

	DRAINAGE				
FLOODING SOURCE	AREA	PEAK DISCHARGES (cfs)			
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
CUPSAW BROOK Approximately 2,250 feet downstream of					
Greenwood Lake Turnpike Just downstream of	4.65	638	1,020	1,210/1,510 ¹	1,680
Greenwood Lake Turnpike Approximately 1,790	4.38	626	1,010	1,190/1,4901	1,670
feet downstream of Cupsaw Drive Approximately 4,690	4.24	524	845	1,010/1,2601	1,410
feet upstream of Cupsaw Lake Dam Approximately 5,120	1.62	249	406	484/605 ¹	685
feet upstream of Cupsaw Lake Dam	1.60	240	392	467/584 ¹	660
CUPSAW BROOK BRANCH 1					
At mouth	0.26	42	54	60	170
At lower lake spillway	0.21	37	47	52	150
Entering lower lake	0.18	48	62	67	190
At upper lake spillway	0.16	40	52	56	170
Entering upper lake	0.05	35	45	52	88
CUPSAW BROOK BRANCH 2					
At mouth	0.11	50	70	80	140
CUPSAW BROOK BRANCH 3 At mouth	1.13	200	360	450	790
CUPSAW BROOK	1.15	200	500	450	190
BRANCH 4 At mouth	0.52	180	250	290	510
DEEP BROOK At mouth At upstream Hawthorne	1.90	460	780	1,050	1,700
corporate limits	1.60	415	690	940	1,530

FLOODING SOURCE	DRAINAGE AREA		PEAK DISCHA	ARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
DOWLING BROOK Near confluence with Passaic River, south of Mcbride Ave	0.74	373	591	694/868 ¹	953
At Hromiak Terrace	0.74	210	336	395/494 ¹	547
At mouth – 60 feet upstream of Lackawanna Ave	0.13	114	189	225/2811	319
ERSKINE BROOK At mouth At lower Erskine Lake	1.19	100	170	220	350
spillway	0.76	17	23	29	62
At upper Erskine Lake spillway	0.33	34	51	64	137
GLEN PLACE BROOK At confluence with Molly Ann Brook	0.14	165	215	235	320
GOFFLE BROOK At mouth	8.90	1,330	2,300	2,800	4,200
Just downstream of Deep	0.90	1,000	2,000	_,000	.,_00
Brook Just upstream of Deep	7.20	1,150	1,970	2,400	3,600
Brook	5.30	940	1,600	2,000	3,050
At upstream Hawthorne corporate limits	4.60	850	1,450	1,840	2,840
GREAT NOTCH BROOK At mouth Approximately 550 feet downstream of US	1.05	420	680	800	1,130
Highway 46 in Little Falls	0.50	240	390	470	680
GREEN BROOK At mouth	2.0	330	570	720	1,270
GREENWOOD LAKE At spillway	27.10	907	1,640	2,060	3,350

FLOODING SOURCE	DRAINAGE		PEAK DISCH	ARGES (cfs)	
AND LOCATION	AREA (sq. miles)	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
HAYCOCK BROOK	<u>(sq. miles)</u>				
At the confluence with		440	(72)	501/05 (1	1.040
Ramapo River Approximately 25 feet	4.11	448	673	781/976 ¹	1,040
downstream of Pines					
Lake Drive West	3.68	428	643	746/933 ¹	987
Approximately 160 feet downstream of Pines					
Lake Drive	2.73	341	514	596/745 ¹	792
Approximately 1,830					
feet upstream of Tamarack Road	1.85	261	392	455/569 ¹	602
Approximately 50 feet					
downstream of Berdan Ave	0.23	94.7	162	195/244 ¹	284
AVC	0.23	94.7	102	1931244	204
HIGH MOUNTAIN					
BROOK (Downstream) At mouth	2.05	320	550	680	1,030
At Wanaque corporate					
limits	0.91	230	330	380	570
At confluence with High Mountain Brook					
Branch 4	0.11	40	55	60	110
HIGH MOUNTAIN					
BROOK (Upstream)					
At its confluence with					
Stephens Lake Brook Branch 2	0.93	167	270	321/401 ¹	448
Approximately 350 feet	0.75	107	270	521,101	110
upstream of Conklintown	0.93	169	273	324/4051	453
Approximately 640 feet	0.93	109	215	524/405	455
upstream of		. = .		22	
Conklintown Just upstream of	0.93	170	275	327/409 ¹	457
Cannon Ball Drive	0.82	146	235	279/349 ¹	389
Just downstream of	0.95	150	245	201/264	106
Cannon Ball Drive Just downstream of	0.85	152	245	291/364 ¹	406
Stephens Lake Road	0.73	139	223	265/331 ¹	368

FLOODING SOURCE	DRAINAGE				
AND LOCATION	AREA (sq. miles)	10-PERCENT	PEAK DISCH 2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT
HIGH MOUNTAIN BROOK (Upstream) (continued)	<u>(84. miles)</u>	<u></u>		<u> </u>	<u></u>
Just downstream of Stephens Lake Road Approximately 1,370 feet upstream of	0.69	142	228	271/339 ¹	377
Stephens Lake Dam Approximately 3,020 feet upstream of	0.46	107	173	206/2581	287
Stephens lake Dam	0.32	89	145	172/215 ¹	242
HIGH MOUNTAIN BROOK 2					
At mouth	2.16	430	730	920	1,600
At Skyline Drive	1.92	350	600	760	1,340
At James Drive	1.11	170	310	400	700
JONES BROOK At its confluence with Ramapo River	4.28	184	313	380	560
At the confluence of Haycock Brook	0.33	79	138	173	263
LONGHOUSE CREEK At NY/NJ corporate					
limits At upper Mount Laurel	7.60	280	470	580	940
Lake spillway At lower Mount Laurel	6.90	240	420	520	840
Lake spillway	1.90	120	220	270	440
At Lake Lookover	1.20	110	200	260	420
MACDONALD BROOK At mouth	2.90	560	890	1,070	1,620
At Lake spillway in Ringwood	1.90	400	640	770	1,160
MEADOW BROOK At mouth Approximately 1,660 feet upstream of	5.82	751	1,212	1,443/1,804 ¹	2,025
Warren Hagstrom Blvd.	5.54	734	1,193	1,424/1,780 ¹	2,009

	DRAINAGE				
FLOODING SOURCE	AREA		PEAK DISCH		
AND LOCATION	(sq. miles)	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
MEADOW BROOK (continued) Approximately 600 feet downstream of meadow					
Brook Ave Approximately 750 feet upstream of	5.3	740	1,207	1,443/1,8041	2,042
Conklintown Road At Ringwood corporate	3.16	501	816	975/1,219 ¹	1,378
limits At lower Skyline Lake	2.79	430	700	870	1,550
spillway At upper Skyline Lake	2.76	390	660	820	1,460
spillway	2.52	410	690	870	1,540
MEADOW BROOK BRANCH 2					
At mouth At Lake spillway in	0.16	50	60	70	130
Ringwood	0.09	16	28	35	75
MOLLY ANN BROOK At its confluence with					
the Passaic River Just upstream of Crosby	7.94	1,750	2,680	3,210	4,720
Avenue diversion	7.39	1,680	2,580	3,090	4,560
At West Broadway	6.82	1,620	2,500	3,010	4,460
At Haledon Street Approximately 1,800 feet downstream of	6.16	1,510	2,350	2,840	4,230
Overlook Ave Approximately 940 feet downstream of Squaw	5.99	1,239	1,923	2,247/2,809 ¹	3,057
Brook Road Approximately 230 feet	4.71	1,052	1,622	1,890/2,363 ¹	2,556
upstream of High Mountain Road Approximately 1,000	2.75	819	1,322	1,565/1,956 ¹	2,190
feet upstream of Sicomac Road Approximately 2,800	2.26	669	1,079	1,276/1,5951	1,786
feet upstream of Sicomac Road	1.64	443	670	776/970 ¹	1,034

FLOODING SOURCE AND LOCATION	DRAINAGE AREA (sq. miles)	10-PERCENT	PEAK DISCHA	ARGES (cfs) <u>1-PERCENT</u>	0.2-PERCENT
MOLLY ANN BROOK TRIBUTARY 3 At its confluence with Molly Ann Brook	0.31	225	295	<u>320</u>	430
MOLLY ANN BROOK TRIBUTARY 4 At its confluence with					
Molly Ann Brook	0.18	165	215	235	320
At Mead Avenue MOLLY ANN BROOK TRIBUTARY 6 At its confluence with Molly Ann Brook	0.02	90 125	120 160	130 180	190 250
MORSETOWN BROOK					
At mouth	1.40	250	410	520	930
At Marshall Hill Road	1.10	180	310	390	700
At confluence with Belcher Creek Branch 1	0.60	123	178	205	350
At confluence with	0.20	40	66	20	165
Belcher Creek Branch 2	0.30 0.30	42 38	66 60	80 72	165 150
At Capri Lake spillway	0.50	38	00	12	150
NAACHTPUNKT BROOK At confluence with Singac Brook	1.71	300	460	552	855
NAACHTPUNKT BROOK (UPPER REACH) Upstream of Totowa Road	0.72	142	244	306	459
PACKANACK BROOK Approximately 420 feet	0.55		1.0.10	1 10015 == 21	• • • • •
downstream of US 202 3,840 feet downstream	3.53	520	1,069	1,400/1,750 ¹	2,891
of Packanack Lake Dam	3.20	479	1,006	1,324/1,6551	2,800

FLOODING SOURCE	DRAINAGE		PEAK DISCHA	RGES (cfs)	
AND LOCATION	AREA (sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
PACKANACK BROOK (continued)	<u></u>				
2,950 feet downstream					
of Packanack Lake Dam	2.95	518	1,098	1,429/1,786 ¹	2,798
Packanack Lake Dam 3,430 feet upstream of	2.48	247	615	1,043/1,3041	2,479
Packanack Lake Dam	2.07	520	1,069	1,400/1,7501	2,891
PASSAIC RIVER ² At downstream Passaic					
corporate limit	910	17,746	26,401	30,772	43,185
Above Third River	889	14,945	21,718	25,184	35,952
At USGS Gage (No.		,	,	,	,
3895) at Little Falls	762	11,437	17,903	21,469	30,008
PEARL BROOK					
At confluence with Passaic River	0.24	246	320	245	460
At Borrego Drive	0.24 0.17	246 61	81	345 101	460 156
At Dollego Dilve	0.17	01	01	101	150
PECKMAN RIVER					
At confluence with					
Passaic River	9.70	1,220	1,800	2,200	3,400
At downstream Little Falls corporate limits	9.55	1,180	1,780	2,160	3,350
Fails corporate mints	9.55	1,100	1,780	2,100	5,550
PEQUANNOCK RIVER At downstream Pompton					
Lakes corporate limits At confluence of	204.86	7,355	11,227	13,374	18,364
Wanaque River At confluence of Van	94.12	3,854	6,036	7,264	10,165
Dam Brook At confluence of Stone	81.10	3,230	5,168	7,456	7,711
House Brook At confluence of	73.50	3,048	4,877	7,036	7,276
Oakwood Lake Brook	72.70	3,028	4,845	6,990	7,229

¹ 1-percent-annual-chance discharge / New Jersey Flood Hazard Area Design Flood (NJFHADF) discharge; the NJFHADF discharge is equal to the 1-percent-annual-chance flow plus an additional 25 percent in flow, and not to exceed the 0.2-percent-annual-chance flow.

² Upstream of Dundee Dam to the upstream Passaic Corporate Limit the discharges are based on an unsteady state HEC-RAS Model for which maximum water surface elevation and maximum discharge do not always occur at the same time. This modeling needs to be referenced for discharges along this portion of the Passaic.

	DRAINAGE				
FLOODING SOURCE	AREA		PEAK DISCH		
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
PEQUANNOCK RIVER					
(continued)					
At confluence of Cold					
Spring Brook	70.70	2,979	4,690	6,766	6,998
At downstream West					
Milford corporate limits	68.80	2,931	4,690	6,766	6,998
At Rockaway-Kinnelon					
corporate limits	50.90	2,040	3,200	4,725	5,240
At confluence of					
Charlotteburg Reservoir	50.20	2,030	3,190	4,725	5,240
Just below confluence					
with Kanouse Brook	47.50	1,950	3,070	4,538	5,040
Upstream of confluence					
with Kanouse Brook	43.50	1,830	2,890	4,275	4,750
At Rockaway-Jefferson					
corporate limits	43.20	1,840	2,890	4,288	4,760
Upstream of confluence					
with Clinton Brook	31.90	1,490	2,350	3,475	3,860
Upstream of confluence					
with Walloce Pond				_	
Brook	28.20	1,390	2,190	$2,600/3,250^{1}$	3,610
Outlet of Oak Ridge					
Reservoir	27.0	1,410	2,230	2,640/3,3001	3,670
POMPTON RIVER					
At mouth – confluence					
with Passaic River	355	18,094	31,231	387,639/48,300 ¹	60,668
		,	,	, ,	,
POMPTON RIVER					
UNNAMED					
TRIBUTARY					
At mouth	0.28	80	178	239/299 ¹	60,668
Approximately 110 feet					
upstream of railroad	0.26	78	175	235/294 ¹	425
Approximately 1,970					
feet upstream of					
railroad	0.23	74	172	$229/287^{1}$	402
DOCT DDOOV					
POST BROOK					
At Wanaque corporate	*	205	690	820	1 270
limits	*	395 205	680 525	820	1,370
At Union Avenue	*	295 285	525	630 500	1,050
At First Avenue	ক	285	490	590	985

*Data Not Available

	DRAINAGE				
FLOODING SOURCE	AREA		PEAK DISCH	ARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
POST BROOK (continued) At confluence with					
Post Brook Branch 2	*	220	350	425	710
At Doty Road	*	215	290	330	550
POST BROOK (WEST MILFORD) At West Milford					
corporate limits At confluence with Post	2.00	130	220	280	460
Brook Branch 3 At Gordon Lake	1.20	90	160	200	340
spillway At Algonquin Waters	1.10	90	160	200	340
spillway	0.60	41	65	77	182
At Algonquin Waters	0.30	100	140	170	300
POST BROOK BRANCH 1					
At mouth	*	130	205	250	420
At Union Avenue	*	90	130	155	260
POST BROOK BRANCH 2					
At mouth At Thomas Lake	0.32	100	140	160	280
Spillway	0.16	50	70	85	150
POST BROOK BRANCH 3					
At mouth At Weaver Road	0.50 0.40	150 120	210 170	250 200	440 350
POST BROOK BRANCH 4					
At mouth	0.10	11	17	21	41
At Weaver Road	0.10	5	8	10	14

*Data not available

<u>11</u>	DRAINAGE		<u>CII/M(OL5</u> - (ontinued	
FLOODING SOURCE	AREA		PEAK DISCH	ARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
RAMAPO RIVER At downstream Pompton	170	10.542	17.070	20 57 4/25 710	22.214
Lakes corporate limits At upstream Pompton	160	10,562	17,079	20,574/25,718 ¹	32,316
Lakes corporate limits	154	4,508	14,075	16,852/21,065 ¹	25,141
RINGWOOD CREEK Approximately 1,030 feet downstream of Margaret King Road	16.90	1,038	1,948	2,480/3,100 ¹	4,184
Approximately 213 feet upstream from Farm		,) -	, ,	, -
Road	16.40	1,020	1,914	2,437/3,0461	4,110
RINGWOOD CREEK BRANCH 1 At mouth	0.26	80	110	130	230
7 tt mouth	0.20	00	110	150	230
SINGAC BROOK At its confluence with Passaic River	11.82	1,475	2,282	2,664/3,330 ¹	3,625
Just upstream of railroad bridge Approximately 1,070	11.45	1,442	2,.231	2,604/3,2551	3,542
feet upstream of I-80 interchange Approximately 890 feet upstream Continental	10.71	1,385	2,140	2,496/3,120 ¹	3,391
Drive Approximately 1,210	8.73	1,217	1,880	2,193/2,7411	2,977
feet upstream of French Hill Road Approximately 3,040	7.0	1,192	1,847	2,157/2,6961	2,935
feet upstream of French Hill Road Approximately 1,270	6.96	1,078	1,672	1,953/2,4411	2,658
feet upstream of Preakness Ave	4.45	757	1,178	1,376/1,720 ¹	1,877
Just downstream of Pike Drive Approximately 200 feet	1.79	371	575	670/838 ¹	909
upstream of Valley Road	1.45	258	401	467/584 ¹	636

$\underline{TABLE\;6-SUMMARY\;OF\;DISCHARGES}\ -\ continued$

FLOODING SOURCE	DRAINAGE AREA		PEAK DISCHA	ARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT
SLIPPERY ROCK BROOK At downstream West					
Paterson corporate limits At upstream end of	0.80	130	220	300	385
Barbours Pond At confluence with	0.31	100	180	240	315
the Passaic River	0.90	200	300	340	450
SQUAW BROOK At its confluence with Molly Ann Brook	1.09	330	545	670	970
At the Lake near Indian Trail	0.44	185	240	260	350
STEPHENS LAKE BROOK At Ringwood corporate limits	1.87	320	550	680	1,030
STEPHENS LAKE BROOK BRANCH 1 At Conklintown Road	0.17	70	95	110	190
STEPHENS LAKE BROOK BRANCH 2 At mouth At Ringwood corporate	0.41	130	190	210	380
limit At Green Road	0.26 0.25	85 85	120 120	140 140	240 240
THIRD RIVER					
Upstream of confluence with Passaic River At Joralemon Street At confluence with Third	13.20 9.00	2,970 2,180	3,780 2,775	4,110 3,020	5,525 4,075
River Tributary 1 At Garden State Parkway	5.84 3.14	1,275 1,010	1,913 1,290	2,300 1,400	3,080 1,880
At the Montclair corporate limits	3.00	630	948	1,295	1,458
Just downstream of Grove Street	1.64	620	790	860	1,155
TRIBUTARY 1 TO POSTS BROOK At Twiliger Lake spillway *Data not available	*	75	110	130	220

*Data not available

DRAINAGE FLOODING SOURCE AREA PEAK DISCHARGES (cfs) (sq. miles) **10-PERCENT 0.2-PERCENT** AND LOCATION 2-PERCENT **1-PERCENT** TRIBUTARY 1 TO POSTS BROOK (continued) At Lower Morse Lake spillway * 30 50 80 135 At Lake Iosco spillway * 6 42 76 130 At Glen Wild Lake * spillway 30 50 60 115 **TRIBUTARY 2 TO** POSTS BROOK At downstream Bloomingdale corporate limits * 95 130 150 250 * At Lake Iosco spillway 19 83 136 225 TRIBUTARY 1 TO SINGAC BROOK At its confluence with Singac Brook 1.32 204 348 433 646 **TRIBUTARY 3 TO** SINGAC BROOK At its confluence with Singac Brook 1.03 215 363 452 670 At its confluence with Singac Brook 1.03 215 363 452 670 At its confluence with * 5,570 8,760 Pequannock River 10,710 15,600 At Ringwood corporate limits * 5,570 8,760 10,710 15,600 At the confluence with 5,984 12,107 15,569 25,007 the Pequannock River 97.70 At downstream Wanaque corporate limits 97.70 5,570 8,760 10,710 15,600 At Raymond Dam spillway 15,600 90.40 5,570 8,760 10,710 At USGS Gage No. 01384000 at Monks 40.40 2,380 4,470 5,670 9,460 TRIBUTARY TO VAN DAM BROOK At its confluence with Van Dam Brook 0.27 82 141 177 267 VAN DAM BROOK At its confluence with 0.70 215 359 the Pequannock River 446 656

TABLE 6 - SUMMARY OF DISCHARGES - continued

*Data not available

FLOODING SOURCE	DRAINAGE AREA		PEAK DISCH	ARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
VAN DAM BROOK (Continued) At the confluence of Tributary to Van Dam Brook	0.36	139	235	294	438
WABASH BROOK Upstream of Confluence with Passaic River	1.20	400	635	770	1,200
WANAQUE RIVER Approximately 1,113 feet downstream of Corning Avenue Approximately 88 feet upstream of Route 511		5,984 5,570	12,107 8,760	$15,569/19,461^1$ $10,710/13,388^1$	25,007 15,600
WEASEL BROOK At mouth At downstream Clifton corporate limits At USGS Gage No. 013920000 at Jewett	7.10 5.25	1,140 945	1,810 1,505	2,190 1,820	3,300 2,745
Avenue At Clifton Avenue	4.10 2.85	785 748	1,250 1,160	1,510 1,350	2,280 1,840
Just above confluence with Plog Brook Just above confluence with Weasel Brook	2.89	605	960	1,160	1,755
Branch 3-5-2 Just above confluence with Weasel Brook	1.97	594	929	1,090	1,480
Branch WEST BROOK Approximately 2,440 feet upstream of West	0.42	140	225	275	415
Brook Road Approximately 220 feet downstream of Magee Road	11.72 7.39	1,225 933	1,992 1,517	2,380/2,975 ¹ 1,813/2,283 ¹	3,426 2,610
Approximately 2,500 feet upstream of Magee Road	5.91	818	1,33.	1,589/2,000 ¹	2,287

FLOODING SOURCE	DRAINAGE AREA	PEAK DISCHARGES (cfs)			
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
WEST BROOK BRANCH 7 At Upper Mountain Glen Lake At Lindy Lake spillway	0.10 0.10	28 26	40 37	95 42	89 82

The stillwater elevations have been determined for the 10-, 2-, 1-, and 0.2-percentannual-chance floods for the flooding sources studied by detailed methods and are summarized in Table 7, "Summary of Stillwater Elevations."

TABLE 7 - SUMMARY OF STILLWATER ELEVATIONS

	ELEVATION (feet NAVD88)			
FLOODING SOURCE AND LOCATION	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
LOWER TWIN LAKE Entire shoreline within the Borough of Pompton Lakes	207.9	209.1	209.8	212.6
PACKANACK LAKE Entire shoreline within the Township of Wayne	177.2	*	179.2	*
GREENWOOD LAKE Entire shoreline within the Township of West Milford	619.8	620.6	621.0	622.1

*Data not available

3.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Users should be aware that flood elevations shown on the FIRM represent rounded whole-foot elevations and may not exactly reflect the elevations shown on the Flood Profiles or in the Floodway Data tables in the FIS report. For construction and/or floodplain management purposes, users are encouraged to use the flood elevation data presented in this FIS in conjunction with the data shown on the FIRM

Prior to the September 27, 2007, FIS, the following hydraulic analyses were performed:

For streams studied by detailed methods within Passaic County, water-surface elevations of floods of the selected recurrence intervals were computed using the USACE HEC-2 step-backwater computer program (USACE, 1973 and USACE, 1974), with the exception of Haledon Reservoir's outlet structures. The computer

program was judged inappropriate for this application and was replaced by a hand calculation. The locations of all cross sections were taken at close intervals above and below bridges and culverts in order to compute the significant backwater effects of these structures in urbanized areas.

In the Borough of Bloomingdale, cross-section data for the backwater analyses were obtained from aerial photographs (Quinn and Associates, <u>Aerial Photographs</u>, Borough of Bloomingdale, 1972), and below-water sections were obtained by field measurement. All bridges and culverts were field-surveyed to obtain elevation data and structural geometry.

For the hydraulic analyses, starting water-surface elevations for Posts Tributary 1 and Posts Tributary 2 were obtained from the FIS for the Borough of Wanaque. Starting water-surface elevations for the remaining streams studied by detailed methods were determined by the slope/area method.

In the City of Clifton, streams studied by detailed methods, channel cross sections and partial overbank cross sections were obtained through field surveys. The overbanks were extended using topographic maps. In areas where the topographic maps did not indicate the recent development, full cross sections of the streams were taken. All bridges were field surveyed to obtain elevation data and structural geometry.

The starting water-surface elevations for Wabash Brook were determined by normal depth for the floodway analysis, and concurrent peaks were assumed with the Passaic River for multiple runs. Concurrent peaks were assumed to yield the highest logical water-surface elevations for use as a planning tool. Starting water-surface elevations for Weasel Brook Branch were taken at their confluence with Weasel Brook.

For areas studied by approximate methods, the depth-discharge frequency relationship developed by the State of New Jersey and USGS (New Jersey Department of Conservation and Economic Development, 1964) was used to determine the approximate 1-percent-annual-chance flood elevations.

The hydraulic analysis for the Borough of Haledon has been revised for this Countywide FIS and can be found at the end of this section.

In the Borough of Hawthorne, the cross sections for the backwater analyses of Goffle Brook and Deep Brook were determined by a field-survey of the channel data supplemented with overbank data obtained from the topographic survey (Geod Aerial Mapping, Field Brook for Topographic Maps of the Borough of Hawthorne, 1976).

The starting elevations for Goffle Brook were taken from the Passaic River profiles, while the starting elevations for Deep Brook were taken from the Goffle Brook profiles.

In the Township of Little Falls, cross sections for the Passaic River were taken from the 1938 USACE survey. This information was field-checked and supplemented where appropriate with the 1935 WPA Survey and a 1976 topographic survey (Geod

Corporation, <u>Topographic Maps</u>, <u>Borough of Little Falls</u>, <u>New Jersey</u>, 1976). Cross sections for the Peckman River and Great Notch Brook were determined by field surveys.

The starting elevations for the Peckman River were taken from the profiles of the Passaic River and the starting elevations for Great Notch Brook were taken from the profiles of the Peckman River.

In the Borough of North Haledon, channel cross sections and required dimensions of hydraulic structures were obtained through field surveys. The overbanks were extended using topographic maps (Geod Corporation, <u>Topographic Maps, Borough of North Haledon</u>, December 1976).

Starting water-surface elevations for Molly Ann Brook were obtained from the mean annual flood level in the Passaic River at the confluence. Starting water-surface elevations for all other tributaries of Molly Ann Brook were taken at their confluence with Molly Ann Brook.

For Molly Ann Brook Tributary 1, studied by approximate methods, depth; discharge; frequency relationships for non-coastal plain sites in New Jersey, based upon the mean annual flood; and field investigations, along with information supplied by borough officials were used to establish flows and boundaries.

In the City of Passaic, cross sections of MacDonald Brook were taken from the 1976 topographic survey and field checked by the study contractor. In this study, a tidal elevation of 11 feet (NGVD29) was used as the minimum base flood to establish the 1-percent-annual-chance flood elevations. The mean annual tide was assumed to coincide with the 10-, 2-, 1- and 0.2-percent-annual-chance peak discharges. The starting water-surface elevations for MacDonald Brook were taken from their respective confluence with the Passaic River.

In the City of Paterson, cross sections for backwater analysis for Slippery Rock Brook were taken from the 1938 USACE Survey. This information was field-checked and supplemented where appropriate with the 1935 WPA Survey and data obtained from the County Engineer.

Starting water-surface for Slippery Rock Brook was the mean annual flood level in the Passaic River at its confluence.

In the Borough of Pompton Lakes, cross-section data for the backwater analyses were obtained from aerial photographs (Quinn and Associates, <u>Aerial Photographs</u>, Borough of Pompton Lakes, 1972); below-water sections were obtained by field measurement.

Starting water-surface elevations for Posts Brook were calculated by the slope/area method.

In the Borough of Ringwood, cross sections were field surveyed for backwater analyses. Starting water-surface elevations in the Wanaque Reservoir were based on a rating curve developed for Raymond Dam Spillway. Coincidental elevations in the Ringwood Creek Branch 1 and West Brook were used as starting water-surface elevations for the various branches of Ringwood Creek Branch 1. Starting watersurface elevations on Stephens Lake Brook were obtained from a study for the Borough of Wanaque. Coincidental water-surface elevations in the Wanaque Reservoir were used as starting water-surface elevations on Erskine Brook. Based on the analysis of downstream conditions and due to steep channel slopes, the starting water-surface elevation on Stephens Lake Brook Branch 1 was based on critical depth.

For streams studied by approximate methods in the Boroughs of Ringwood, Totowa, and Wanaque, the 1-percent-annual-chance flood was determined by the method described in <u>Water Resources Circular No. 14</u> (New Jersey Department of Conservation and Economic Development, 1964).

In the Borough of Totowa, channel cross sections and partial overbank cross sections for Naachtpunkt Brook were obtained through field survey. The survey data and cross sections were obtained from the FIS for the Township of Wayne. The data were supplemented with information from the topographic maps referenced above. In areas where the topographic maps did not indicate the most recent developments, full cross sections of the streams were taken.

Starting water-surface elevations for Naachtpunkt Brook were taken at its confluence with Singac Brook.

In the Borough of Wanaque, starting water-surface elevations on Lake Washington (formerly Rainbow Valley Lake) were obtained from a study for the Borough of Ringwood. Coincidental water-surface elevations on Lake Washington and Wanaque River were then used as starting elevations on Post Brook, Post Brook Branch 1, Post Brook Branch 2, High Mountain Brook and High Mountain Brook Branch 2. Starting water-surface elevations on the Wanaque Reservoir were based on a rating curve developed for the Raymond Dam spillway.

In the Township of Wayne, cross sections for the Passaic River were taken from the 1938 USACE Study, supplemented where appropriate by the 1935 WPA Survey and subsequently checked against topographic maps dated 1976 (Geod Corporation, <u>Topographic Maps</u>, Borough of Little Falls, 1976). Cross sections for the remaining streams studied by detailed methods were obtained from topographic maps compiled from aerial photographs and below-water sections obtained by field measurements.

Starting water-surface elevations for Jones Brook, Naachtpunkt Brook and Naachtpunkt Brook (Upper Reach), Singac Brook Tributary 1 and Singac Brook Tributary 3 were determined assuming coincident peak flows.

For streams studied by approximate methods, the extent of the 1-percent-annualchance flood was determined using Special Report 38. In the Township of West Milford, most cross sections for backwater analyses were field surveyed.

Starting water-surface elevations for Greenwood Lake were based on a rating curve developed for the Greenwood Lake spillway. Coincidental elevations in the lake were used as starting water-surface elevations for Belcher Creek, which were in turn used to develop water-surface elevations for Belcher Creek Branches 1 and 2, Cooley Brook, Green Brook and Morsetown Brook. Due to steep channel slopes, starting water-surface elevations for Longhouse Creek and Post Brook were based on critical depth. Coincidental elevations on Post Brook were used as starting elevations on their respective branches, all located in the Township of West Milford.

For the FIS dated September 28, 2007, the following analyses were performed:

Information on the methods used to determine peak discharge-frequency relationships for Molly Ann Brook, restudied as part of this countywide FIS, is shown below.

The Molly Ann Brook study area extends upstream from its confluence with the Passaic River to Church Street, a distance of approximately 2.8 miles. This section contains 16 distinct bridge crossings as it traverses an urban area. Using aerial photographs, 83 cross-section locations were identified for use in the modeling program. These locations were then surveyed to obtain accurate information on the river channel and bank configurations. The overbanks were extended using a topographic survey dated 2006. The surveyors also obtained the necessary dimensions of the bridge structures and overlying streets.

In addition to the bridges, there is also one small low-head dam near the top of the study area, and a flood-control diversion structure located approximately 0.63 miles upstream of the confluence. The purpose of this diversion is to carry water from Molly Ann Brook directly to the base of the Great Falls on the Passaic River, which is substantially lower than the mouth of Molly Ann Brook above the Great Falls. Constructed around 1960, the diversion was intended to control flooding in low-lying areas and thus to allow for development. The land in the study area is now effectively completely built out.

The study area for the September 28, 2007 FIS has been the subject of a joint USACE/NJDEP bank and channel stabilization project, which is due for completion in 2006. The bulkheads and bridge improvements of that project have been incorporated in this hydraulic analysis.

The backwater analysis was conducted using the USACE HEC-RAS program to develop water-surface profiles (USACE, May 2005). Starting water-surface elevations were computed using normal depth. Channel and overbank geometry, as well as roughness coefficients, expansion and contraction coefficients, and bridge and culvert geometry were input into the program following the guidelines of the HEC-RAS Users Manual (USACE, November 2002).

The flood diversion mentioned above is modeled in HEC-RAS as a lateral structure, consisting of an ogee weir and a sluice gate. A rating table was developed for the weir. The gate was modeled within HEC-RAS. This diversion has a substantial effect on water-surface elevations both above and below it, as intended.

For the [*date*] FIS, the following analyses were performed:

The following flooding sources were studied by detailed methods: Acid Brook, Branch 3-5-2 Weasel Brook, Buttermilk Falls, Cupsaw Brook, Dowling Brook, Haycock Brook, High Mountain Brook (Upstream Reach), Meadow Brook, Molly Ann Brook, Packanack Brook, Passaic River, Pequannock River, Pompton River, Pompton River (Unnamed Tributary), , Ramapo River, Ringwood Creek, , Ramapo River, Ringwood Creek, Singac Brook, Third River, Wanaque River, Weasel Brook, and West Brook Reach 1. For Pompton Lake and the Ramapo River, an unsteady flow analysis was performed from the upstream county boundary to the downstream end at its confluence with the Pequannock River. For the Pompton River, an unsteady flow analysis was performed from the upstream end at the confluence of the Ramapo and Pequannock Rivers to approximately 750 feet downstream to County Road 680. The rest of the flooding sources and the Pompton River from County Road 680 to the downstream county boundary at its confluence with the Passaic River, were studied using a steady flow analysis. For the above streams studied by detailed methods within Passaic County, water-surface elevations of floods of the selected percent-annual-chance were computed using the USACE HEC-RAS (River Analysis System) Version 4.1.0 computer program (USACE, 2010). Channel information was obtained from the surveys of the natural valley and overbank information was obtained from Light Detection and Ranging (LiDAR) data. Both of these data were combined and used for the cross-section information for HEC-RAS for each of the modeled reaches.

For the unsteady flow analysis, the USACE Hydrologic Engineering Center's River Analysis System computer model (HEC-RAS) was used. The unsteady option within HEC-RAS was chosen for its ability to solve the full dynamic, Saint-Venant equations using the implicit finite difference method. Under unsteady flow, a discharge hydrograph is applied at the upstream boundary, and a discharge-stage rating (rating curve) at the downstream boundary. The unsteady methodology allows the program to calculate both stages and discharges throughout the studied reach. Due to the operation of the Pompton Lake Dam floodgates, the water-surface elevation and flow both upstream and downstream of the dam have the potential to change. Therefore, the use of the dynamic wave (discharge and stage vary over time) approach allows for the attenuation of the water as it moves downstream. For the Pompton Lake Dam, construction plans were supplied by the USACE. In order to capture the inline structure and service bridge, a combination of HEC-RAS inline structure data, blocked obstructions and lidded cross sections were used. Currently HEC-RAS does not have the ability to perform a multiple opening analysis for a bridge-inline weir combination.

Within the unsteady HEC-RAS model, inflow hydrographs were used as inputs to the model. The hydrographs were obtained from a calibrated HEC-HMS model (described in detail under Section 3.1, Hydrologic Analyses). For Pompton unsteady model runs, a downstream boundary condition of a rating curve was used. The rating curve was constructed for USGS Gage No. 01388500 near County Road 680 from the USGS Water Watch website Custom Rating Curve Builder toolkit (U.S. Department of the Interior). All stage versus discharge data was converted from the National Geodetic Vertical Datum of 1929 (NGVD29) to the North American Vertical Datum of 1988 (NAVD88) and then the stage value was converted to water-surface elevation using the localized datum of the gage.

The rule curve data for Pompton Lake Dam was extracted from the Pompton Lake Dam, NJ, Appendix C, NY OMRR and R Manual document (USACE, 2008) as supplied by the USACE – NY District and coded into the HEC-RAS as a user-defined Rule Operation boundary condition. The rule curve operation was coded in such a way as to determine the simulated water-surface elevation for each unsteady simulation at every 15-minute interval. The water-surface elevation reading was taken at the first cross section just upstream of Pompton Lake Dam. This elevation was then used to calculate the difference in relation to the set point (target) elevation, which in turn determined the gate opening so as to mimic the rule curve data.

The goal of the hydraulic calibration was to maintain as close as possible duplication of the routed inflow hydrograph data to that of the observed hydrograph at the following USGS gages: No. 1388500 near County Road 680, No. 1388000 just upstream of Pompton Lake Dam, and the stages at gage No. 0138810 Dawes Highway Bridge. Minor modifications were made to two of the inflow hydrographs by the use of a multiplier. Various multipliers were tested for the Hurricane Irene plan because numerous high water marks were available for this event. A multiplier of 0.9 was applied to the inflow hydrograph for the Ramapo River, and 0.4 for the Pequannock River. These values yielded the best comparison between the routed hydrology and observed hydrographs as well as the observed high water marks. For calibration of the unsteady HEC-RAS model, high water marks were acquired from three different sources for the Hurricane Irene event: the USGS Water Website and field measurements from both the USACE and the USGS.

For those detailed study streams which used a steady flow analysis, water-surface elevations of the selected recurrence intervals were computed using HEC-RAS, version 4.1.0. The hydraulic analyses were based on unobstructed flow. The computed flood elevations are thus considered valid only if hydraulic structures remain unobstructed, operate properly, and do not fail. Models were developed by extracting cross-section topographic data directly from a digital elevation model, and supplemented with field measurements for the structures. Starting water-surface elevations were based on normal depth using channel invert slopes, or where applicable (where limited detail studies extend effective detailed studies), known water-surface elevations.

The Passaic River discharges from above Dundee Dam to the upstream Corporate Limit for Passaic County are based on a calibrated (both discharge and stage) unsteady state HEC-RAS Model (RAMPP, 2013). The hydraulic model below Dundee Dam to the downstream Corporate Limit is based on a calibrated Steady State HEC-RAS

Model. All modeling geometry was based on a field survey of natural cross sections and structures completed between January 1 and May 25, 2010. Final model cross-section geometries, approximately 2,500 feet apart, were obtained by blending a field surveyed main channel with the overbank geometry developed from LiDAR data collected in 2007.

Roughness factors (Manning's "n") used in the hydraulic computations were chosen by engineering judgment and were based on field observations of the streams and floodplain areas, examination of previous studies, and contact with local engineers and officials. Roughness factors for all streams studied by detailed methods are shown in Table 8, "Manning's "n" Values."

TABLE 8 - MANNING'S "n" VALUES

Stream	Channel "n"	Overbank "n"
Acid Brook	0.024-0.035	0.024-0.150
Belcher Creek	0.024-0.045	0.050-0.100
Belcher Creek Branch 1	0.024-0.045	0.050-0.100
Belcher Creek Branch 2	0.023-0.045	0.060-0.100
Branch, Weasel Brook	0.015-0.048	0.060-0.150
Branch 3-5-2, Weasel Brook	0.015-0.048	0.060-0.150
Burnt Meadow Brook	0.024-0.050	0.030-0.100
Burnt Meadow Brook Branch 5	0.024-0.050	0.030-0.100

TABLE 8 - MANNING'S "n" VALUES (continued)

Stream	Channel "n"	Overbank "n"
Buttermilk Falls (Falls Brook)	0.024-0.035	0.024-0.150
Cold Spring Brook	0.020-0.090	0.020-0.200
Cooley Brook	0.023-0.045	0.060-0.100
Cupsaw Brook	0.024-0.035	0.024-0.150
Cupsaw Brook Branch 1	0.024-0.050	0.030-0.100
Cupsaw Brook Branch 2	0.024-0.050	0.030-0.100
Cupsaw Brook Branch 3	0.024-0.050	0.030-0.100
Cupsaw Brook Branch 4	0.024-0.050	0.030-0.100
Deep Brook	0.024-0.050	0.070
Dowling Brook	0.024-0.035	0.024-0.150
Erskine Brook	0.024-0.050	0.030-0.100
Glen Place Brook	0.025-0.045	0.070-0.150
Goffle Brook	0.040-0.045	0.040-0.070
Great Notch Brook	0.025-0.045	0.040-0.610
Green Brook	0.029-0.045	0.040-0.010
Haycock Brook	0.024-0.035	0.024-0.150
High Mountain Brook (Downstream Reach)	0.024-0.035	0.024-0.150
High Mountain Brook (Downstream Reach)	0.015-0.040	0.024-0.150
High Mountain Brook (Opsilean Reach)	0.024-0.050	0.030-0.100
Jones Brook	0.035-0.070	0.000-0.100
Longhouse Creek	0.024-09.050	0.050-0.100
MacDonald Brook	0.024-09.050	0.050
MacDonald Brook Meadow Brook	0.024-0.035	0.024-0.150
Meadow Brook Branch 2	0.024-0.055	0.030-0.100
Molly Ann Brook	0.024-0.030	0.024-0.150
Molly Ann Brook Tributary 3	0.025-0.045	0.070-0.150
Molly Ann Brook Tributary 4	0.025-0.045	0.070-0.150
Molly Ann Brook Tributary 6	0.025-0.045	0.070-0.150
Mony Ann Brook Thouary o	0.023-0.043	0.070-0.130
Naachtpunkt Brook	0.012-0.080	0.050-0.200
Naachtpunkt Brook (Upper Reach)	0.012-0.080	0.050-0.200
Oakwood Lake Brook	0.020-0.050	0.130-0.200
Packanack Brook	0.020-0.030	0.024-0.150
Passaic River	0.015-0.102	0.024-0.150
Pearl Brook	0.025-0.045	0.070-0.150
Peckman River	0.025-0.045	0.070-0.150
Pequannock River	0.023-0.043	0.024-0.150
Post Brook	0.024-0.060	0.024-0.130
Post Brook Branch 1	0.024-0.000	0.043-0.200
Post Brook Branch 2	0.023-0.043	0.040-0.100
Post Brook Branch 3	0.024-0.050	0.040-0.100
Post Brook Branch 4	0.024-0.050	0.070-0.100
	0.024-0.050	0.070-0.100
Rainbow Valley Lake		
Ramapo River	0.024-0.035	0.024-0.150

TABLE 8 - MANNING'S "n" VALUES (continued)

Stream	Channel "n"	Overbank "n"
Ringwood Creek	0.024-0.035	0.024-0.150
Ringwood Creek Branch 1	0.024-0.050	0.030-0.100
Singac Brook	0.024-0.035	0.024-0.150
Slippery Rock Brook	0.025-0.045	0.070-0.150
Squaw Brook	0.025-0.045	0.070-0.150
Stephens Lake Brook	0.024-0.050	0.030-0.100
Stephens Lake Brook Branch 1	0.024-0.050	0.030-0.100
Stephens Lake Brook Branch 2	0.024-0.050	0.030-0.100
Third River	0.024-0.035	0.024-0.150
Tributary 1 to Posts Brook	0.020-0.080	0.100-0.200
Tributary 2 to Posts Brook	0.060	0.100
Tributary 1 to Signac Brook	0.012-0.070	0.070-0.150
Tributary 3 to Signac Brook	0.015-0.080	0.050-0.200
Tributary to Van Dam Brook	0.020-0.060	0.040-0.200
Van Dam Brook	0.040-0.080	0.020-0.050
Wabash Brook	0.015-0.048	0.060-0.150
Wanaque River	0.024-0.035	0.024-0.150
Weasel Brook	0.024-0.035	0.024-0.150
Weasel Brook Tributary	0.012-0.040	0.060-0.120
West Brook	0.024-0.035	0.024-0.150
West Brook Branch 7	0.015-0.045	0.050-0.100

As discussed previously, certain flooding sources were studied using limited detailed and approximate methods. These methods are discussed below.

Also, a portion of this [*date*] FIS includes <u>"Limited Detail</u> "Enhanced <u>Approximate Floodplains":</u> - This category is assigned to certain areas previously designated as approximate Zone A flood zones where communities have requested upgraded flood hazard analyses or no flood hazard analyses existed, but due to the low level of projected development or budget limitations, a detailed study was not performed. It is also applied to lakes that do not have level gage data. These enhanced zones were created using the following data and methodologies: digital orthophotos, LIDAR, limited survey of structures, nomination of flow rates, and the development of HEC-RAS hydraulic models.

The term "limited survey" refers to the survey of manmade hydraulic obstructions, such as dams, bridges and culverts, and to the survey of outlet channels of lakes with natural outlet controls. The purpose of collecting limited survey is to enhance the accuracy of the hydraulic model thus allowing the development of Advisory Base Flood Elevations (BFEs) at selected cross sections. Engineering drawing plans and Department of Transportation (DOT) hydraulic studies may have been substituted for limited survey, where appropriate and available.

Floodways and flood profiles were not developed for streams studied using limited detail methods; however, the 1-percent-annual-chance advisory base flood elevations for selected modeled cross-sections are provided in Table 9, "Limited

Detailed Flood Hazard Data Table." These cross-section locations will also be shown on the FIRM. Because the base flood elevations are advisory, the published values need not be used to enforce floodplain management ordinances as outlined in 44 CFR 60.3(c)(10), but should be used as base flood elevation data according to 44 CFR 60.3(b)(4). Development in Special Flood Hazard Areas that are designated as Zone A but which have advisory flood elevations should comply with the elevation standards, but may not have to develop an analysis of increases in water surface elevations, unless required by the local community.

The following flooding sources were studied by limited detail methods: Hewitt Brook, Hewitt Brook Tributary 2, Kanouse Brook, Lenox Brook, Pompton River – UNT, Preakness Brook, Preakness Brook Tributary 6, Preakness Brook 6B, West Brook, West Brook Tributary 11, West Brook Tributary 11A, West Brook Tributary 12, West Brook Tributary 13, West Brook Tributary 13A, and West Brook Tributary 14. Water-surface elevations of the 1-percent-annual-chance flood were computed using HEC-RAS, version 4.1.0 with the exception of Haledon Reservoir, for which HEC-HMS Version 3.4 was used for reservoir routing. LiDAR data was used for model cross-sections.

Cross Section Number & Stream Distance from		1% Annual Chance	
Confluence with Wanaque River	Flood Discharge (cfs)	Advisory Base Flood Elevation (Feet NAVD88)	FIRM Panel Number
HEWITT BROOK			
1 (589 ft)	1,010	412.1	0039/0043
2 (869 ft)	1,010	419.6	0039
3 (1,369 ft)	1,010	429.4	0039
4 (1,869 ft)	1,010	436.4	0039
5 (2,868 ft)	1,010	445.3	0039
6 (3,369 ft)	1,010	446.7	0039
7 (3,869 ft)	1,010	451.7	0039
8 (4,369 ft)	1,010	457.8	0039
9 (5,257 ft)	1,010	471.6	0039
Cross Section Number & Stream Distance from Confluence with Hewitt Brook HEWITT BROOK TRIBUTARY 2			
1 (16 ft)	682	471.8	0039
2 (500 ft)	682	478.6	0039
3 (1,000 ft)	682	486.7	0039
4 (1,500 ft)	682	500.3	0039

TABLE 9 - LIMITED DETAILED (ENHANCED A-ZONES) FLOOD HAZARD DATA

Cross Section Number & Stream Distance from			
Confluence with Hewitt Brook		1% Annual Chance	
HEWITT BROOK TRIBUTARY	Flood Discharge	Advisory Base Flood	
2 (continued)	(cfs)	Elevation (Feet NAVD88)	FIRM Panel Number
5 (2,000 ft)	682	517.7	0039
6 (2,500 ft)	682	522.6	0039
7 (3,000 ft)	560	524	0039
8 (3,500ft)	560	524.7	0039
9 (4,000 ft)	512	532.2	0039
10 (4,500 ft)	237	540.3	0039
11 (4,756 ft)	201	545.2	0039
Cross Section Number & Stream			
Distance from Limit of Detailed			
Study LAYHAM BROOK			
1 (144 ft)	257	179	0184
2 (1,000 ft)	257	194.7	0184
3 (2,000 ft)	257	205.1	0184
4 (3,000 ft)	247	213.4	0184
5 (4,000 ft)	253	219.3	0184
6 (5,000 ft)	242	234.4	0184
7 (5,391 ft)	161	234.4	0184
Cross Section Number & Stream			
Distance from Limit of Detailed			
Study			
LENOX BROOK			
1 (23 ft)	56	254	0184
2 (500 ft)	56	255.8	0184
3 (1,000 ft)	56	258	0184
4 (1,439 ft)	56	260	0184
Cross Section Number & Stream			
Distance from Confluence with			
Pequannock River			
KANOUSE BROOK			
1 (1,000 ft)	612	749.6	0116
2 (2,000 ft)	612	750.4	0116
3 (3,000 ft)	612	750.8	0116

Cross Section Number & Stream Distance from			
Confluence with Pequannock River		1% Annual Chance Advisory Base Flood	
KANOUSE BROOK	Flood Discharge	Elevation (Feet	
(continued)	(cfs)	NAVD88)	FIRM Panel Number
4 (4,000 ft)	612	751.1	0116
5 (5,000 ft)	612	753.5	0116
6 (6,000 ft)	612	759.5	0116
7 (7,000 ft)	612	772.2	0116
8 (8,000 ft)	612	773.2	0116
9 (9,000 ft)	612	774.5	0116
10 (10,000 ft)	454	779.7	0116
11 (11,000 ft)	454	778.5	0116
12 (12,000 ft)	454	792.3	0116
13 (13,000 ft)	454	795.4	0116
14 (14,000 ft)	454	796.5	0110
15 (15,000 ft)	454	797.8	0110
16 (16,000 ft)	454	798.8	0110
17 (17,000 ft)	454	799.2	0110
18 (18,000 ft)	454	799.5	0110
19 (19,000 ft)	454	800.4	0110
20 (20,000 ft)	454	803.1	0110
21 (21,000 ft)	454	804.4	0110
22 (22,000 ft)	454	805.7	0110
23 (23,000 ft)	454	808	0110
24 (24,000 ft)	454	810.7	0110
25 (25,000 ft)	428	815.3	0110
Cross Section Number &			
Stream Distance from Limit of			
Detailed Study PREAKNESS BROOK			
1 (368 ft)	327	318	0201
2 (891 ft)	252	319.5	0201
3 (1,380 ft)	252	340.2	0201
4 (1,856 ft)	252	391	0201
5 (2,356 ft)	252	402.9	0201
6 (2,856 ft)	252	405.9	0201
7 (3,120 ft)	160	406.4	0201

Cross Section Number & Stream			
Distance from Confluence with		1% Annual Chance	
Singac Brook		Advisory Base Flood	
PREAKNESS BROOK TRIBUTARY	Flood Discharge	Elevation (Feet	
6	(cfs)	NAVD88)	FIRM Panel Number
1 (1,500 ft)	724	218.9	0203
2 (2,000 ft)	724	223	0203
3 (2,841 ft)	721	227.9	0203
4 (3,462 ft)	721	234.8	0203
5 (4,000 ft)	721	237.4	0203
6 (4,467 ft)	721	239.5	0203
7 (5,092 ft)	653	248.7	0203
8 (5,751 ft)	653	258.1	0203
9 (6,175 ft)	653	272.2	0203
10 (6,623 ft)	653	287.8	0203
11 (6,988 ft)	653	288	0203
12 (7, 988 ft)	442	296.4	0203
13 (8, 488 ft)	396	307.6	0203
14 (8, 988 ft)	396	307.7	0203
15 (9, 488 ft)	336	309.9	0203
16 (9, 988 ft)	336	315	0203
17 (10,358 ft)	336	322	0203
18 (10, 752 ft)	289	323.3	0203
Cross Section Number & Stream			
Distance from Confluence with			
Preakness Brook Tributary 6 PREAKNESS BROOK			
TRIBUTARY 6B			
1 (9 ft)	161	287.7	0203
2 (500 ft)	161	296.7	0203
3 (878 ft)	161	303.7	0203
4 (1,347 ft)	161	318.8	0203
5 (1,755 ft)	161	326.7	0203
Cross Section Number & Stream			
Distance from Limit of Detailed			
Study WEST BROOK REACH 1			
1 (1,000 ft)	1,410	581.4	0129
2 (1,752 ft)	1,410	608.6	0129
3 (2,236 ft)	1,320	623.2	0129
4 (2,972 ft)	1,320	653.6	0129
	,		

Cross Section Number & Stream

Cross Section Number & Stream Distance from Limit of Detailed Study WEST BROOK REACH 1	Flood Discharge (cfs)	1% Annual Chance Advisory Base Flood Elevation (Feet NAVD88)	FIRM Panel Number
(continued)	(015)	1(11) 200)	
5 (3,472 ft)	1,320	668	0129
6 (3,748 ft)	1,320	678.7	0128/0129
7 (4,472 ft)	1,290	697.9	0128
8 (5,472 ft)	1,290	723.3	0128
9 (6,275 ft)	1,040	746.4	0128
10 (6,908 ft)	1,040	765	0128
11 (7,972 ft)	984	794	0128
12 (8,472 ft)	984	813.6	0128
13 (8,972 ft)	984	836.2	0128
14 (9,472 ft)	984	847.8	0128
15 (10,063 ft)	511	868.3	0128
16 (10,472 ft)	508	869.1	0128
17 (10,963 ft)	508	883.2	0128
18 (11,473 ft)	497	894.1	0128
19 (20,003 ft)	497	310.8	0128
20 (12,473 ft)	497	919.5	0128
21 (12,955 ft)	497	932.2	0128
22 (13,244 ft)	497	932.6	0128
Cross Section Number & Stream Distance from Confluence with West Brook Reach 1 WEST BROOK REACH 1 TRIBUTARY 11			
1 (109 ft)	445	673.5	0129
2 (533 ft)	445	691.8	0129
3 (1,029 ft)	445	707.1	0128/0129
4 (1,706 ft)	445	737.5	0128
5 (2,445 ft)	445	817.9	0128
6 (3,024 ft)	445	861	0128
7 (3,524 ft)	445	873.5	0128
8 (4,522 ft)	405	884.1	0128
9 (5,314 ft)	366	885.8	0128

Cross Section Number & Stream Distance from Confluence with West Brook Reach 1 WEST BROOK REACH 1 TRIBUTARY 12	Flood Discharge (cfs)	1% Annual Chance Advisory Base Flood Elevation (Feet NAVD88)	FIRM Panel Number
1 (15 ft)	386	773.1	0128
2 (200 ft)	376	785.3	0128
Cross Section Number & Stream Distance from Confluence with West Brook Reach 1 WEST BROOK REACH 1 TRIBUTARY 13			
1 (31 ft)	362	852.7	0128
2 (601 ft)	362	865.6	0128
3 (1,000 ft)	347	871.3	0128
4 (1,438 ft)	347	881.5	0128
5 (2,017 ft)	347	884.7	0128
6 (2,311 ft)	347	889.8	0128
Cross Section Number & Stream Distance from Confluence with West Brook Reach 1 WEST BROOK REACH 1 TRIBUTARY 13A			
1 (200 ft)	95	892.4	0128
2 (379 ft)	95	902.8	0128
Cross Section Number & Stream Distance from Confluence with West Brook Reach 1 WEST BROOK REACH 1 TRIBUTARY 14	261	007.0	0120
1 (8 ft)	261	926.2	0128
2 (290 ft)	261	934.4	0128

All qualifying benchmarks within a given jurisdiction that are cataloged by the National Geodetic Survey (NGS) and entered into the National Spatial Reference System (NSRS) as First or Second Order Vertical and have a vertical stability classification of A, B, or C are shown and labeled on the FIRM with their 6-character NSRS Permanent Identifier.

Bench marks cataloged by the NGS and entered into the NSRS vary widely in vertical stability classification. The NSRS vertical stability classifications are as follows:

- Stability A: Monuments of the most reliable nature, expected to hold position/elevation well (e.g., mounted in bedrock)
- Stability B: Monuments that generally hold their position/elevation well (e.g., concrete bridge abutment)
- Stability C: Monuments that may be affected by surface ground movements (e.g., concrete monument below frost line)
- Stability D: Mark of questionable or unknown vertical stability (e.g., concrete monument above frost line, or steel witness post)

In addition to NSRS bench marks, the FIRM may also show vertical control monuments established by a local jurisdiction; these monuments will be shown on the FIRM with the appropriate designations. Local monuments will only be placed on the FIRM if the community has requested that they be included, and if the monuments meet the aforementioned NSRS inclusion criteria.

To obtain current elevation, description, and/or location information for bench marks shown on the FIRM for this jurisdiction, please contact the Information Services Branch of the NGS at (301) 713-3242, or visit their Web site at www.ngs.noaa.gov.

It is important to note that temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the Technical Support Data Notebook associated with this FIS and FIRM. Interested individuals may contact FEMA to access this data.

3.3 Vertical Datum

All FISs and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum in use for newly created or revised FISs and FIRMs was NGVD29. With the finalization of NAVD88, many FIS reports and FIRMs are being prepared using NAVD88 as the referenced vertical datum.

All flood elevations shown in this FIS report and on the FIRM are referenced to NAVD88. Structure and ground elevations in the county must, therefore, be referenced to NAVD88. It is important to note that adjacent communities may be referenced to NGVD29. This may result in differences in Base Flood Elevations (BFEs) across the corporate limits between communities.

Prior versions of the FIS reports and FIRMS were referenced to NGVD29. When a datum conversion is effected for an FIS report and FIRM, the Flood profiles, and BFEs reflect the new datum values. To compare structure and ground elevations to

BFEs shown in the FIS and on the FIRM, the structure and ground elevations must be referenced to the new datum values.

As noted above, the elevations shown in this FIS report and on the FIRM for Passaic County are referenced to NAVD88. Ground, structure, and flood elevations may be compared and/or referenced to NGVD29 by applying a standard conversion factor. The conversion factor to NGVD29 is +0.796. The BFEs shown on the FIRM represent whole-foot rounded values. For example, a BFE of 102.4 will appear as 102 on the FIRM and 102.6 will appear as 103. Therefore, users who wish to convert elevations in this FIS to NGVD29 should apply the stated conversion factor(s) to elevations shown on the Flood Profiles and supporting data tables in the FIS report, which are shown at a minimum to the nearest 0.1 foot.

For more information on NAVD88, see <u>Converting the National Flood Insurance</u> <u>Program to the North American Vertical Datum of 1988</u>, FEMA Publication FIA-20/June 1992, or contact the Spatial Reference System Division, NGS, NOAA, Silver Spring Metro Center, 1315 East-West Highway, Silver Spring, Maryland 20910 (Internet address <u>http://www.ngs.noaa.gov</u>).

4.0 FLOODPLAIN MANAGEMENT APPLICATIONS

The NFIP encourages State and local governments to adopt sound floodplain management programs. To assist in this endeavor, each FIS provides 1-percent-annual-chance floodplain data, which may include a combination of the following: 10-, 2-, 1-, and 0.2-percent-annual-chance flood elevations; delineations of the 1- and 0.2-percent-annual-chance floodplains; and 1-percent-annual-chance floodway. This information is presented on the FIRM and in many components of the FIS, including Flood Profiles, Floodway Data tables, and Summary of Stillwater Elevation tables. Users should reference the data presented in the FIS as well as additional information that may be available at the local community map repository before making flood elevation and/or floodplain boundary determinations.

4.1 Floodplain Boundaries

To provide a national standard without regional discrimination, the 1-percent-annualchance flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2-percent-annual-chance flood is employed to indicate additional areas of flood risk in the county. For the streams studied in detail, the 1and 0.2-percent-annual-chance floodplain boundaries have been delineated using the flood elevations determined at each cross section.

For the September 28, 2007, FIS and FIRMs, between cross sections the floodplain boundaries including Molly Ann Brook were interpolated using topographic maps at scales of 1"=200' with a contour interval of 2 feet (Robinson Aerial Surveys, 2006).

For the [*date*] FIS and FIRMs, LiDAR was flown with a Root Mean Square Error (RMSE) of 18.5 centimeters vertically and a 95-percent confidence level. The

LiDAR was flown during leaf-off, no snow on the ground, and water levels in streams that were at normal or below base level. This data set met the 2-foot contour interval. (NJDEP2007)

The 1- and 0.2-percent-annual-chance floodplain boundaries are shown on the FIRM (Exhibit 2). On this map, the 1-percent-annual-chance floodplain boundary corresponds to the boundary of the areas of special flood hazards (Zones A and AE), and the 0.2-percent-annual-chance floodplain boundary corresponds to the boundary of areas of moderate flood hazards. In cases where the 1- and 0.2-percent-annual-chance floodplain boundary the 1-percent-annual-chance floodplain boundary been shown. Small areas within the floodplain boundaries may lie above the flood elevations, but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data.

For the streams studied by approximate methods, only the 1-percent-annual-chance floodplain boundary is shown on the FIRM (Exhibit 2).

New Jersey Flood Hazard Area Design Flood

For the Delaware River, the NJFHADF floodplain boundary was delineated in addition to the 1- and 0.2-percent-annual-chance boundaries. The NJDEP is mandated to delineate and regulate flood hazard areas pursuant to N.J.S.A. 58:16A-50 et seq., the Flood Hazard Area Control Act. This Act authorizes the NJDEP to adopt land use regulations for development within the flood hazard areas, to control stream encroachments, and to integrate the flood control activities of the municipal, county, State and Federal Governments.

The State's Flood Hazard Area delineations are defined by the NJFHADF. In 1974, the Water Policy and Supply Council passed a resolution stating that the NJFHADF shall be equal to a design flood discharge 25 percent greater in flow than the 1-percent-annual-chance flood.

4.2 Floodways

Encroachment on floodplains, such as structures and fill, reduces flood-carrying capacity, increases flood heights and velocities, and increases flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from floodplain development against the resulting increase in flood hazard. For purposes of the NFIP, a floodway is used as a tool to assist local communities in this aspect of floodplain management. Under this concept, the area of the 1-percent-annual-chance floodplain is divided into a floodway and a floodway fringe. The floodway is the channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment so that the 1-percent-annual-chance flood can be carried without substantial increases in flood heights. Minimum Federal standards limit such increases to 1.0 foot, provided that hazardous velocities are not produced. The floodways in this FIS are presented to local agencies as minimum standards that can be adopted directly or used as a basis for additional floodway studies. However, the State of New Jersey has established

criteria limiting the increase in flood heights to 0.2 foot. Thus, floodways having no more than a 0.2-foot surcharge have been delineated for this study.

The floodways presented in this FIS were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain.

Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. The results of the floodway computations are tabulated for selected cross sections (Table 10). The computed floodways are shown on the FIRM (Exhibit 2). In cases where the floodway and 1-percent-annual-chance floodplain boundaries are either close together or collinear, only the floodway boundary is shown.

Portions of the floodways for the Passaic, Pequannock, Pompton, Ramapo and Third Rivers extend beyond the county boundary.

Near the mouths of streams studied in detail, floodway computations are made without regard to flood elevations on the receiving water body. Therefore, "Without Floodway" elevations presented in Table 10 for certain downstream cross sections of Branch 3-5-2 - Weasel Brook, Dowling Brook, Goffle Brook, Jones Brook, Molly Ann Brook, Morsetown Brook, Peckman River, Post Brook, Singac Brook, Slippery Rock Brook, Third River, Tributary to Van Dam Brook, Van Dam Brook, and the Wanaque River are lower than the regulatory flood elevations in that area, which must take into account the 1-percent-annual-chance flooding due to backwater from other sources.

Encroachment into areas subject to inundation by floodwaters having hazardous velocities aggravates the risk of flood damage and heightens potential flood hazards by increasing velocities. A listing of stream velocities at selected cross sections is provided in Table 10, "Floodway Data." In order to reduce the risk of property damage in areas where the stream velocities are high, the community may wish to restrict development in areas outside the floodway.

The area between the floodway and 1-percent-annual-chance floodplain boundaries is termed the floodway fringe. The floodway fringe encompasses the portion of the floodplain that could be completely obstructed without increasing the water-surface elevation of the 1-percent-annual-chance flood by more than 1.0 foot at any point. However, the State of New Jersey has established criteria limiting the increase in flood heights to 0.2 foot. Thus, floodways having no more than a 0.2-foot surcharge have been delineated for this study. Typical relationships between the floodway and the floodway fringe and their significance to floodplain development are shown in Figure 1.

	FLOODING SOURCE FL			FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)				
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Ac	id Brook									
	А	1,858	39	160	2.5	209.0	209.0	209.0	0.0	
	В	2,756	64	197	2.1	214.1	214.1	214.1	0.0	
	С	3,582	170	162	2.5	216.6	216.6	216.6	0.0	
	D	4,447	159	346	1.2	220.0	220.0	220.2	0.2	
	E	5,313	34	103	4.0	221.0	221.0	221.1	0.1	
	F	6,367	80	429	1.0	226.4	226.4	226.5	0.1	
	G	7,289	67	170	2.4	227.9	227.9	228.1	0.2	
	Н	8,575	14	42	9.7	231.9	231.9	231.9	0.0	
	I	9,347	115	344	1.2	245.6	245.6	245.8	0.2	
	J	10,151	26	65	6.3	247.5	247.5	247.6	0.1	
	K	10,933	19	51	8.0	287.9	287.9	287.9	0.0	
	L	11,945	80	212	1.9	321.8	321.8	321.8	0.0	
	М	12,631	103	185	2.2	333.4	333.4	333.4	0.0	
	Ν	13,052	37	96	4.3	335.4	335.4	335.5	0.1	
	0	13,790	38	71	5.8	360.9	360.0	360.1	0.1	
	Р	14,639	48	70	5.9	451.0	451.0	451.0	0.0	
	Q	15,372	18	54	7.6	487.9	487.9	488.1	0.2	
	R	15,741	44	86	4.8	502.5	502.5	502.6	0.1	
¹ F	eet above confluence with the	Ramapo River		1		I				
_	FEDERAL EMERGEN	CY MANAGEMEN	T AGENCY							
TABLE							DWAY DA	ТΛ		
Ξ						I LOOL		IA		
	PASSAIC	COUNTY,	NJ							
E 10						ACI	D BROOK			
0					ACID BROOK					

							BASE F	LOOD	
	FLOODING SOU	RCE		FLOODWA	Y	V	ATER-SURFAC	CE ELEVATION	
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Be	Icher Creek			,	,				
	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A	920 1,296 2,705 4,675 5,520 6,500 7,680 8,670 9,430 9,670 9,770 15,610 15,706 15,771 16,905 18,040 19,265 20,416 20,515 21,455 22,610 22,708 23,000 23,110 23,690 23,810 24,335	$\begin{array}{c} 103 \\ 115 \\ 250 \\ 338 \\ 1,164 \\ 849 \\ 776 \\ 274 \\ 55 \\ 56 \\ 470 \\ 78 \\ 199 \\ 335 \\ 294 \\ 596 \\ 304 \\ 142 \\ 470 \\ 126 \\ 148 \\ 141 \\ 157 \\ 157 \\ 111 \\ 115 \\ 97 \end{array}$	$\begin{array}{c} 730 \\ 1,291 \\ 1,414 \\ 2,068 \\ 5,318 \\ 3,372 \\ 3,239 \\ 738 \\ 272 \\ 290 \\ 1,833 \\ 350 \\ 688 \\ 1,554 \\ 1,038 \\ 1,554 \\ 1,038 \\ 1,553 \\ 337 \\ 363 \\ 2,094 \\ 272 \\ 186 \\ 338 \\ 180 \\ 688 \\ 176 \\ 348 \\ 265 \end{array}$	$\begin{array}{c} 3.5\\ 2.0\\ 1.4\\ 0.9\\ 0.4\\ 0.6\\ 0.5\\ 2.0\\ 5.6\\ 5.2\\ 0.7\\ 4.4\\ 2.2\\ 1.0\\ 1.5\\ 0.7\\ 3.1\\ 2.8\\ 0.4\\ 3.4\\ 4.9\\ 2.7\\ 5.1\\ 1.3\\ 5.2\\ 2.6\\ 3.5\end{array}$	$\begin{array}{c} 621.0\\ 622.8\\ 623.0\\ 623.2\\ 623.3\\ 623.4\\ 623.5\\ 623.6\\ 624.9\\ 625.8\\ 634.6\\ 634.6\\ 637.3\\ 643.5\\ 644.1\\ 644.8\\ 646.3\\ 653.8\\ 661.7\\ 663.0\\ 672.7\\ 675.4\\ 678.8\\ 684.9\\ 688.5\\ 700.2\\ 700.4\\ \end{array}$	621.0 622.8 623.2 623.3 623.4 623.5 623.6 624.9 625.8 634.6 634.6 637.3 643.5 644.1 644.8 646.3 653.8 661.7 663.0 672.7 675.4 678.8 684.9 688.5 700.2 700.4	621.2 622.9 623.1 623.3 623.4 623.5 623.6 623.7 625.1 625.9 634.6 634.6 637.3 643.5 644.2 645.0 646.3 654.0 661.7 663.0 672.9 675.4 678.8 685.1 688.5 700.3 700.5	0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.1 0.2 0.0 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.0 0.1
¹ F	¹ Feet above mouth								
TABLE						FLOOI	DWAY DA	ТА	
Π	PASSAIC COUNTY, NJ								

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

10

BELCHER CREEK

	FLOODING SOUF	RCE		FLOODWA	Y	N N	BASE F ATER-SURFAC FEET N	CE ELEVATION		
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
	lcher Creek ontinued)			,	,					
	AB AC AD AE AF AG AH AI AJ AK AL	24,900 ¹ 24,967 ¹ 25,720 ¹ 25,877 ¹ 26,690 ¹ 26,815 ¹ 27,040 ¹ 27,250 ¹ 27,470 ¹ 27,620 ¹ 28,075 ¹	46 151 34 45 25 59 43 120 63 182 174	153 638 95 228 73 409 93 338 119 956 188	6.0 1.4 9.6 3.1 9.8 1.7 7.7 2.1 5.9 0.7 3.8	706.0 709.9 715.4 720.0 731.4 739.8 740.9 751.2 753.2 779.7 780.0	706.0 709.9 715.4 720.0 731.4 739.8 740.9 751.2 753.2 779.7 780.0	706.2 709.9 715.4 720.1 731.4 740.0 740.9 751.2 753.2 779.7 780.0	0.2 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0	
Bra	AM Incher Creek anch 1 A B C D E F F	28,180 ¹ 320 ² 455 ² 1,085 ² 1,175 ² 1,340 ² 1,631 ²	67 61 39 18 53 210 41	227 215 120 23 211 704 180	3.1 0.7 1.3 6.8 0.8 0.2 0.9	785.8 623.5 625.3 635.4 642.3 647.6 652.7	785.8 623.5 625.3 635.4 642.3 647.6 652.7	786.0 623.6 625.4 635.5 642.5 647.8 652.7	0.2 0.1 0.1 0.2 0.2 0.0	
- F	eet above confluence with Belo	cher Greek								
TABLE	FEDERAL EMERGENO			FLOO	DWAY DA	ТА				
PASSAIC COUNTY, NJ3(ALL JURISDICTIONS)				BE		CREEK – B	ELCHER	CREEK B	RANCH 1	

	BASE FLOOD									
	FLOODING SOUF	ICE		FLOODWA	Y	v	BASE F ATER-SURFAC/ FEET N/	CE ELEVATION		
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Be	Icher Creek Branch 2			,	, , ,					
	А	200 ¹	295	759	1.0	644.8	644.8	645.0	0.2	
	В	328 ¹	117	671	1.2	649.1	649.1	649.3	0.2	
	С	358 ¹	224	1,013	0.8	649.4	649.4	649.6	0.2	
	D	1,700 ¹	284	298	2.7	651.0	651.0	651.1	0.1	
	E	2,375 ¹	320	265	3.0	663.9	663.9	664.0	0.1	
	F	2,447 ¹	28	93	8.5	666.7	666.7	666.7	0.0	
	G	3,270 ¹	20	78	9.9	719.8	719.8	719.9	0.1	
	Н	4,315 ¹	65	197	3.9	725.7	725.7	725.9	0.2	
	I	5,090 ¹	23	73	10.5	730.7	730.7	730.7	0.0	
	J	5,890 ¹	105	211	1.2	738.6	738.6	738.8	0.2	
	K	6,880 ¹	25	38	6.9	756.6	756.6	756.6	0.0	
	L	6,966 ¹	26	103	2.5	762.0	762.0	762.2	0.2	
Bra	anch Weasel Brook									
	A	100 ²	85	405	1.8	132.7	132.7	132.9	0.2	
	В	320 ²	42	322	2.3	132.7	132.7	132.9	0.2	
	С	580 ²	110	571	1.3	132.8	132.8	133.0	0.2	
	D	990 ²	108	336	2.2	132.8	132.8	133.0	0.2	
	E	1,235 ²	42	232	3.2	133.0	133.0	133.2	0.2	
Bra	anch 3-5-2, Weasel Brook									
	А	112 ³	175	1,088	0.5	119.8	119.0 ⁴	119.0	0.0	
	В	462 ³	29	59	9.7	119.8	119.0 ⁴	119.1	0.1	
	С	1,009 ³	85	119	4.8	130.1	130.1	130.1	0.0	
	D	1,554 ³	12	45	12.6	137.1	137.1	137.1	0.0	
	E	1,907 ³	19	49	11.5	143.7	143.7	143.8	0.1	
	eet above confluence with Belo	har Crack		4Elovation com		nsideration of backw	ator offects from V	Nacaol Brack		
² Fe	eet above confluence with Ber eet above confluence with Wea eet above confluence with Wea	asel Brook Junction				ISUCIALUIT OF DACKW		VEASEI DIUUN		
	FEDERAL EMERGENO		T AGENCY							
۲Þ					DWAY DA	тл				
B	PASSAIC COUNTY, NJ (ALL JURISDICTIONS)					FLUUL		IA		
					BELCHER CI	REEK BRANCH			BROOK –	
O BRANCH 3-5-2, WEASEL BROOK										

						I	BASE F		
	FLOODING SOUF	CE		FLOODWA	Y	W	ATER-SURFAC FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Βι	rnt Meadow Brook			,	,				
	A B C D E F G H I J K L M	660 ¹ 1,970 ¹ 3,340 ¹ 4,770 ¹ 5,800 ¹ 6,670 ¹ 8,265 ¹ 9,470 ¹ 10,575 ¹ 11,940 ¹ 13,310 ¹ 14,550 ¹	156 236 281 216 138 180 133 150 62 97 68 94 62	230 341 600 458 518 228 384 415 92 116 113 120 110	4.8 3.3 1.8 2.4 2.1 4.7 2.8 2.6 7.3 5.8 5.9 5.6 5.0	351.9 366.9 370.4 372.3 373.9 379.5 384.8 388.6 412.6 435.9 536.2 589.0 612.6	351.9 366.9 370.4 372.3 373.9 379.5 384.8 388.6 412.6 435.9 536.2 589.0 612.6	351.9 367.1 370.6 372.4 373.9 379.5 384.9 388.8 412.6 435.9 536.2 589.0 612.8	0.0 0.2 0.2 0.1 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.2
	N	15,700 ¹	258	194	2.8	636.2	636.2	636.2	0.0
	rrnt Meadow Brook anch 5								
	A B C D E F G	194 ² 612 ² 760 ² 1,825 ² 1,914 ² 2,025 ² 2,175 ²	19 21 753 70 50 12 13	17 17 5,671 26 34 13 18	5.4 5.2 0.0 2.7 2.1 5.2 3.8	601.0 617.8 636.2 659.0 663.8 671.0 688.1	601.0 617.8 636.2 659.0 663.8 671.0 688.1	601.0 617.8 636.2 659.0 664.0 671.0 688.1	0.0 0.0 0.0 0.0 0.2 0.0 0.0
Βι	ttermilk Falls A B	10 ³ 646 ³	55 40	89 58	4.0 6.1	203.4 218.9	202.3 ⁴ 218.9	202.5 218.9	0.2 0.0
² F	eet above confluence with Wes eet above confluence with Burr eet above confluence with Moll	evation comput	ed without consid	deration of backwate	r effects from Moll	y Ann's Brook	1		
TAE	FEDERAL EMERGENCY MANAGEMENT AGENCY PASSAIC COUNTY, NJ (ALL JURISDICTIONS)					FLOOD	DWAY DA	ТА	
Ē					INT MEADO	W BROOK – BI BUTTE	URNT MEAD RMILK FALL		BRANCH 5 –

						1				
	FLOODING SOURCE			FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
But	ttermilk Falls (continued)									
	C D E F G H	1,432 ¹ 2,068 ¹ 2,432 ¹ 2,732 ¹ 3,136 ¹ 3,666 ¹	9 10 19 13 23 30	36 34 42 37 48 51	9.8 10.6 8.4 9.6 7.3 7.0	252.0 287.8 309.4 329.4 347.3 413.6	252.0 287.8 309.4 329.4 347.3 413.6	252.1 288.0 309.5 329.4 347.5 413.6	0.1 0.2 0.1 0.0 0.2 0.0	
Co	ld Spring Brook									
	A B C D E F G H I J oley Brook A B C D E F G	230 ² 410 ² 2,875 ² 3,755 ² 3,855 ² 4,293 ² 5,202 ² 6,062 ² 9,289 ² 9,419 ² 455 ³ 1,470 ³ 1,800 ³ 2,190 ³ 2,344 ³ 2,495 ³ 3,325 ³	19 37 98 21 113 196 563 243 21 73 262 77 70 25 28 49 100	36 83 45 46 47 1,167 5,571 1,328 67 329 699 240 161 74 106 237 117	7.8 3.4 6.2 6.1 5.9 0.2 0.1 0.2 4.1 0.5 1.7 5.0 3.2 7.1 4.9 2.2 4.5 5.5	392.9 397.9 448.0 499.7 509.5 523.2 526.2 526.2 542.4 550.9 623.1 624.8 626.8 628.5 630.3 632.2 636.4	392.9 397.9 448.0 499.7 509.5 523.2 526.2 526.2 526.2 542.4 550.9 623.1 624.8 626.8 628.5 630.3 632.2 636.4 636.4	392.9 397.9 448.0 499.7 509.5 523.2 526.2 526.2 526.2 542.4 550.9 623.2 625.0 627.0 628.6 630.4 632.2 636.4 636.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	Н	4,080 ³	26	94	5.5	642.1	642.1	642.2	0.1	
² Fe	¹ Feet above confluence with Molly Ann's Brook ² Feet above confluence with the Pequannock River ³ Feet above confluence with Belcher Creek									
TABL					FLOODWAY DATA					
, SLE	PASSAIC COUNTY, NJ (ALL JURISDICTIONS)			BU	BUTTERMILK FALLS – COLD SPRING BROOK – COOLEY BROOK					

FLOODING SO	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Cupsaw Brook A B C D E F G H	1.178 ¹ 2.502 ¹ 4.017 ¹ 5.385 ¹ 7.053 ¹ 9.384 ¹ 10.808 ¹ 12.123 ¹	1.839 316 454 385 76 701 600 387	41.915 7.670 9.077 2.915 110 7.299 7.127 6.677	0.03 0.2 0.1 0.4 9.2 0.1 0.1 0.2	305.7 309.2 309.2 326.2 388.7 388.7 388.7	305.7 309.2 309.2 326.2 388.7 388.7 388.7	305.7 309.2 309.2 326.2 388.8 388.8 388.8 388.8	0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1
Cupsaw Brook Branch 1 A B C D E F	13.271 ¹ 700 ² 780 ² 1,165 ² 1,355 ² 2,450 ² 3,220 ²	29 10 46 14 33 5 16	90 10 322 12 61 7 11	5.2 5.8 0.2 5.5 1.1 7.0 4.8	403.8 309.2 315.2 316.3 320.1 350.7 390.0	403.8 306.2 ³ 315.2 316.3 320.1 350.7 390.0	403.8 306.2 315.2 316.3 320.1 350.8 390.0	0.0 0.0 0.0 0.0 0.0 0.1 0.0
Cupsaw Brook Branch 2 A B	245 ² 856 ²	10 10	13 35	6.0 2.3	407.7 444.0	407.7 444.0	407.7 444.0	0.0 0.0
Cupsaw Brook Branch 3 A B	100 ² 610 ²	48 14	78 44	5.7 10.2	392.1 442.0	392.1 442.0	392.3 442.0	0.2 0.0

² Feet above confluence with Cupsaw Brook
 ³ Elevation computed without consideration of backwater effects from Molly Ann's Brook

TABLE 10	FEDERAL EMERGENCY MANAGEMENT AGENCY PASSAIC COUNTY, NJ	FLOODWAY DATA		
	(ALL JURISDICTIONS)	CUPSAW BROOK– CUPSAW BROOK BRANCH 1 – CUPSAW BROOK BRANCH 2 – CUPSAW BROOK BRANCH 3		

	FLOODING SOUF	RCE		FLOODWA	Y	v	BASE F ATER-SURFAC (FEET N	CE ELEVATION			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
-	psaw Brook Branch 3 ntinued)				/						
`	C D E	1,015 ¹ 1,780 ¹ 1,929 ¹	46 44 29	193 76 92	2.3 5.9 4.9	468.9 497.2 504.2	468.9 497.2 504.2	468.9 497.2 504.2	0.0 0.0 0.0		
Cu	psaw Brook Branch 4										
	A B C D E F G	0 ¹ 315 ¹ 427 ¹ 550 ¹ 830 ¹ 952 ¹ 1,410 ¹	52 41 14 17 17 18 17	118 110 49 59 35 51 34	2.5 2.6 5.9 4.9 8.3 5.7 8.5	388.8 397.1 398.5 401.9 427.3 435.5 456.6	388.8 397.1 398.5 401.9 427.3 435.5 456.6	388.8 397.1 398.7 401.9 427.3 435.5 456.6	0.0 0.2 0.0 0.0 0.0 0.0 0.0		
Dee	ep Brook										
	A B C D	170 ² 310 ² 685 ² 950 ²	40 46 46 46	40 46 46 46	6.5 6.4 6.0 6.0	105.3 108.9 115.3 119.4	105.3 108.9 115.3 119.4	105.5 108.9 115.5 119.4	0.2 0.0 0.2 0.0		
Dov	wling Brook										
	A B C D E F	$\begin{array}{c} 1.029^{3} \\ 2.414^{3} \\ 3.262^{3} \\ 4.469^{3} \\ 5.034^{3} \\ 5.574^{3} \end{array}$	33 62 50 50 22 11	195 250 185 87 53 43	3.6 1.6 2.1 4.5 7.5 9.1	129.1 130.8⁴ 131.0⁴ 156.4 211.6 256.9	123.9 ⁵ 127.3 129.3 156.4 211.6 256.9	124.1 127.4 129.4 156.5 211.6 257.0	0.2 0.1 0.1 0.1 0.0 0.1		
² Fe	eet above confluence with Cu eet above confluence with Gof eet above confluence with the	fle Brook				d by the Passaic Riv ed without considera		effects from the Pa	assaic River		
TABLE					FLOODWAY DATA						
.E 10						OK BRANCH (– DOWLIN(AW BROOK	BRANCH 4		

	FLOODING SOUF	ICE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	CE ELEVATION		
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Ers	skine Brook			1 – – – – – – – – – – – – – – – – – – –						
	A B C D E F G H	720 ¹ 740 ¹ 1,350 ¹ 1,526 ¹ 2,515 ¹ 3,390 ¹ 4,370 ¹ 4,516 ¹	20 25 54 29 54 79 35 12	32 39 56 35 53 63 37 7	7.0 5.7 3.9 6.4 4.2 3.5 5.9 4.2	305.4 309.6 328.4 332.9 397.0 432.7 466.3 474.2	305.4 309.6 328.4 332.9 397.0 432.7 466.3 474.2	305.4 309.6 328.4 333.0 397.0 432.7 466.3 474.2	0.0 0.0 0.1 0.0 0.0 0.0 0.0	
	H	4,516 ¹ 4,600 ¹	12 20	8	4.2 3.6	474.2 484.6	474.2 484.6	474.2 484.6	0.0 0.0	
	J	7,430 ¹	13	0 7	4.2	488.4	488.4	488.4	0.0	
Gc	en Place Brook A B C D E F offle Brook A B C D E F	$100^{2} \\ 680^{2} \\ 1,640^{2} \\ 1,850^{2} \\ 2,170^{2} \\ 2,540^{2} \\ 400^{3} \\ 875^{3} \\ 955^{3} \\ 1,500^{3} \\ 1,640^{3} \\ 2,270^{3} \\ \end{cases}$	42 4 8 11 18 10 52 63 68 294 297 51	94 19 54 27 40 26 363 358 486 1,716 1,684 353	2.5 12.4 4.4 8.8 5.9 9.2 7.7 7.8 5.8 1.5 1.6 7.4	302.9 364.7 470.4 490.3 537.6 610.8 42.2 43.2 46.2 49.4 49.4 49.4	302.9 364.7 470.4 490.3 537.6 610.8 40.2 ⁴ 43.2 46.2 49.4 49.4 49.4	303.1 364.7 470.6 490.3 537.7 610.8 40.4 43.4 46.4 49.6 49.6 49.6 49.6	0.2 0.0 0.2 0.0 0.1 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	
2Fe 3Fe	eet above confluence with War eet above confluence with Moll eet above confluence with the F levation computed without cons	y Ann Brook Passaic River	vater effects fr	rom the Passai	c River					
TABLE	FEDERAL EMERGENO					FLOOI	OWAY DA	ТА		
E 10					ERSKINE BROOK – GLEN PLACE BROOK – GOFFLE BROOK					

FLOODING SOU	RCE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N/	E ELEVATION			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Goffle Brook (continued)			,	,						
G H I J K L M N O P Q R S T U V V W X Y Z AA AB AC AD AE	2,660 3,010 3,125 3,600 3,970 4,700 4,800 5,520 6,180 6,280 6,900 7,350 7,800 8,550 8,600 9,670 9,900 10,250 10,340 10,415 11,065 11,160 11,990 12,580 12,880	$\begin{array}{c} 70\\ 55\\ 70\\ 200\\ 95\\ 62\\ 35\\ 105\\ 105\\ 105\\ 40\\ 195\\ 258\\ 80\\ 170\\ 164\\ 35\\ 37\\ 64\\ 125\\ 97\\ 100\\ 100\\ 221\\ 145\\ 68\\ \end{array}$	327 395 325 1,030 303 333 253 313 434 240 584 758 345 685 781 208 303 256 399 755 282 260 620 476 348	$\begin{array}{c} 8.0\\ 6.6\\ 8.1\\ 2.5\\ 8.7\\ 7.9\\ 10.4\\ 8.4\\ 6.0\\ 10.9\\ 4.5\\ 3.5\\ 7.6\\ 3.8\\ 3.4\\ 12.6\\ 8.7\\ 10.3\\ 6.6\\ 3.5\\ 9.3\\ 10.1\\ 4.2\\ 4.0\\ 5.5\end{array}$	$\begin{array}{c} 50.8\\ 52.7\\ 53.2\\ 54.5\\ 54.5\\ 59.3\\ 60.3\\ 62.7\\ 67.8\\ 68.0\\ 71.5\\ 72.7\\ 76.9\\ 84.7\\ 84.8\\ 89.7\\ 91.7\\ 94.9\\ 99.5\\ 100.6\\ 102.3\\ 103.1\\ 112.1\\ 116.8\\ 117.4\\ \end{array}$	50.8 52.7 53.2 54.5 59.3 60.3 62.7 67.8 68.0 71.5 72.7 76.9 84.7 84.8 89.7 91.7 94.9 99.5 100.6 102.3 103.1 112.1 116.8 117.4	50.9 52.9 53.2 54.5 54.5 59.4 60.3 62.7 68.0 68.2 71.6 72.9 76.9 84.7 84.8 89.7 91.8 94.9 99.5 100.6 102.3 103.3 112.3 116.8 117.5	$\begin{array}{c} 0.1\\ 0.2\\ 0.0\\ 0.0\\ 0.0\\ 0.1\\ 0.0\\ 0.0\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$		
	COUNTY,	NJ			FLOOI	OWAY DA	ТА			
	RISDICTION	5)		GOFFLE BROOK						

		1			Γ					
FLOODING SOL	RCE		FLOODWA	Y	w	BASE F ATER-SURFAC/ FEET N	CE ELEVATION			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Goffle Brook (continued) AF AG AH	13,165 ¹ 13,850 ¹ 14,240 ¹	31 43 200	31 43 200	10.1 7.8 4.4	118.2 123.2 125.1	118.2 123.2 125.1	118.3 123.2 125.3	0.1 0.0 0.2		
Al AJ	14,540 ¹ 14,930 ¹	285 192	285 192	6.4 4.0	130.2 132.4	130.2 132.4	130.4 132.6	0.2 0.2 0.2		
Great Notch Brook A B C D E F G H I J K L M		20 20 20 20 81 67 27 15 13 19 15 26	456 934 625 991 52 259 76 57 47 45 73 55 56	1.8 0.9 1.3 0.5 9.1 1.8 6.2 8.2 10.1 10.5 6.5 8.5 8.4	135.3 135.3 135.3 135.5 138.8 142.5 159.9 197.2 223.8 235.6 250.8 259.9	134.1^3 134.1^3 134.1^3 135.5 138.8 142.5 159.9 197.2 223.8 235.6 250.8 259.9	134.2 134.2 134.2 135.5 138.8 142.5 159.9 197.3 223.8 235.6 250.9 259.9	0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0		
	NCY MANAGEMEN	T AGENCY			FLOOI	DWAY DA	ТА			
PASSAIC COUNTY, NJ (ALL JURISDICTIONS)				GOFFLE BROOK – GREAT NOTCH BROOK – GREEN BROOK						

FLOODING SO		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION						
FLOODING 30	UNCE		FLOODWA	.1		(FEET N					
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
Green Brook A B C D E	395 ¹ 1,170 ¹ 1,310 ¹ 2,000 ¹ 2,260 ¹	223 35 237 126 175	217 129 679 154 199	3.3 5.6 1.1 4.7 3.6	627.9 633.6 635.4 646.2 670.7	627.9 633.6 635.4 646.2 670.7	628.0 633.8 635.5 646.2 670.7	0.1 0.2 0.1 0.0 0.0			
Haycock Brook A B C D E F G H I J K L M N O P Q R S T	$\begin{array}{c} 882^2\\ 1,688^2\\ 2,596^2\\ 3,432^2\\ 4,080^2\\ 7,070^2\\ 7,794^2\\ 8,556^2\\ 9,388^2\\ 10,128^2\\ 10,128^2\\ 11,036^2\\ 12,080^2\\ 13,565^2\\ 14,295^2\\ 15,215^2\\ 20,788^2\\ 21,918^2\\ 22,840^2\\ 23,702^2\\ 24,608^2\end{array}$	29 69 34 62 28 214 78 102 95 102 40 85 181 79 144 22 22 19 12 52	119 117 107 167 83 210 196 159 166 214 109 159 889 105 238 27 39 33 27 98	$\begin{array}{c} 6.6\\ 6.7\\ 7.3\\ 4.7\\ 9.5\\ 3.6\\ 3.0\\ 3.8\\ 3.6\\ 2.8\\ 5.4\\ 3.7\\ 0.7\\ 5.7\\ 2.5\\ 7.3\\ 5.0\\ 5.9\\ 7.3\\ 2.0\\ \end{array}$	204.2 211.8 221.0 228.3 233.5 271.9 273.5 280.0 286.8 293.5 302.9 311.1 339.6 339.6 345.5 391.0 408.9 458.6 513.3 536.0	204.2 211.8 221.0 228.3 233.5 271.9 273.5 280.0 286.8 293.5 302.9 311.1 339.6 339.6 345.5 391.0 408.9 458.6 513.3 536.0	204.4 211.9 221.0 228.4 233.5 271.9 273.5 280.0 286.9 293.6 302.9 311.3 339.6 339.6 345.5 391.0 408.9 458.6 513.4 536.0	$\begin{array}{c} 0.2\\ 0.1\\ 0.0\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$			
¹ Feet above confluence with C ² Feet above confluence with th											
	ENCY MANAGEMEN			FLOODWAY DATA							
n (ALL JU			GREEN BROOK – HAYCOCK BROOK								

	FLOODING SOUF	ICE		FLOODWA	Y	v	BASE F ATER-SURFAC (FEET N	CE ELEVATION				
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
(De	gh Mountain Brook iownstream Reach) A B C D E gh Mountain Brook pstream Reach) A B C D E F G H I	185 433 1,510 1,778 2,498 5.687 6.538 7.387 7.924 8.644 9.314 10.174 10.856 11.841	177 32 32 32 37 27 96 82 34 164 92 60 100 34	956 125 92 92 141 44 44 96 63 697 78 114 116 31	0.7 5.5 7.4 7.4 4.8 7.4 3.0 4.2 0.4 3.5 1.8 1.8 5.6	249.5 249.5 253.1 254.2 260.4 324.5 349.9 373.1 398.7 421.6 422.7 440.2 442.2 455.5	247.1 ² 253.1 254.2 260.4 324.5 349.9 373.1 398.7 421.6 422.7 440.2 442.2 455.5	247.2 247.3 253.1 254.4 260.4 324.5 349.9 373.1 398.7 421.6 422.7 440.3 442.3 455.5	0.1 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
	eet Above confluence with Mea Elevation computed without con		water effects f	rom Meadow E	Brook							
TABLE	FEDERAL EMERGENO				FLOODWAY DATA							
E 10					HIGH MOUNTAIN BROOK (DOWNSTREAM REACH) – HIGH MOUNTAIN BROOK (UPSTREAM REACH)							

FLOODING SOL	JRCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
High Mountain Brook 2			,						
A	175 ¹	155	207	4.4	285.9	285.9	285.9	0.0	
В	290 ¹	29	91	10.2	288.8	288.8	288.8	0.0	
С	1,500 ¹	182	231	4.0	339.8	339.8	339.8	0.0	
D	2,795 ¹	109	174	5.3	366.7	366.7	366.7	0.0	
E	3,301 ¹	30	201	3.8	371.9	371.9	371.9	0.0	
F	4,801 ¹	128	149	5.1	384.3	384.3	384.3	0.0	
G	6,401 ¹	125	153	5.0	413.4	413.4	413.4	0.0	
Н	7,836 ¹	212	394	1.9	428.0	428.0	428.2	0.2	
I	7,991 ¹	66	77	5.2	431.4	431.4	431.4	0.0	
J	8,606 ¹	181	162	2.5	466.7	466.7	466.7	0.0	
К	9,341 ¹	84	74	5.4	519.9	519.9	519.9	0.0	
L	10,176 ¹	94	87	4.6	547.4	547.4	547.4	0.0	
М	11,176 ¹	106	106	3.8	580.1	580.1	580.1	0.0	
Ν	12,086 ¹	64	100	4.0	597.6	597.6	597.8	0.2	
Jones Brook									
А	2,800 ²	26	29	6.0	279.3	279.3	279.3	0.0	
В	2,890 ²	98	45	3.9	289.3	289.3	289.3	0.0	
С	2,970 ²	160	762	0.2	289.5	289.5	289.5	0.0	
D	4,130 ²	26	29	6.0	295.7	295.7	295.7	0.0	
E	5,090 ²	43	93	1.9	304.5	304.5	304.6	0.1	
F	5,280 ²	110	236	0.7	306.3	306.3	306.5	0.2	
G	5,760 ²	69	322	0.5	315.1	315.1	315.1	0.0	

¹Feet above mouth

TABLE

0

²Feet above confluence with the Ramapo River ³Elevation computed without consideration of backwater effects from the Ramapo River

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

HIGH MOUNTAIN BROOK 2 – JONES BROOK

						BASE F		
FLOODING SOUF	RCE	FLOODWAY			WATER-SURFACE ELEVATION (FEET NAVD88)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Longhouse Creek			,					
A	39,010 ¹	33	91	6.4	1,088.0	1,088.0	1,088.0	0.0
В	40,645 ¹	340	1,141	0.5	1,089.5	1,089.5	1,089.7	0.2
С	41,560 ¹	350	1,341	0.4	1,089.6	1,089.6	1,089.8	0.2
D	43,660 ¹	250	830	0.7	1,089.9	1,089.9	1,090.0	0.1
E	44,895 ¹	165	667	0.9	1,090.3	1,090.3	1,090.4	0.1
F	45,100 ¹	36	72	8.1	1,092.3	1,092.3	1,092.3	0.0
G	45,250 ¹	50	147	3.5	1,099.8	1,099.8	1,099.8	0.0
Н	54,285 ¹	150	1,223	0.2	1,101.2	1,101.2	1,101.2	0.0
I	57,020 ¹	166	690	0.4	1,101.4	1,101.4	1,101.5	0.1
J	57,750 ¹	55	50	54.0	1,101.8	1,101.8	1,101.8	0.0
К	57,875 ¹	75	341	0.8	1,104.8	1,104.8	1,104.8	0.0
L	58,154 ¹	23	37	7.2	1,104.9	1,104.9	1,104.9	0.0
М	58,262 ¹	70	244	1.1	1,107.5	1,107.5	1,107.5	0.0
N	58,700 ¹	76	161	1.7	1,107.8	1,107.8	1,107.9	0.1
0	59,415 ¹	127	99	2.7	1,112.6	1,112.6	1,112.6	0.0
Р	59,588 ¹	93	256	1.0	1,122.4	1,122.4	1,122.4	0.0
Q	61,510 ¹	42	49	5.3	1,122.5	1,122.5	1,122.5	0.0
R	61,588 ¹	172	1,023	0.3	1,133.9	1,133.9	1,133.9	0.0
MacDonald Brook								
А	2,950 ²	51	202	4.8	45.3	45.3	45.5	0.2
В	3,150 ²	186	562	1.7	46.1	46.1	46.3	0.2
С	3,475 ²	163	363	2.6	46.4	46.4	46.6	0.2
D	3,495 ²	158	222	4.3	47.3	47.3	47.3	0.0
E	3,850 ²	155	269	3.6	48.8	48.8	49.0	0.2
F	3,930 ²	213	399	2.4	49.2	49.2	49.4	0.2
G	4,040 ²	188	449	2.1	49.4	49.4	49.6	0.2

¹Feet above mouth

TABLE

10

²Feet above confluence with the Passaic River

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

LONGHOUSE CREEK – MACDONALD BROOK

	FLOODING SOUF	RCE		FLOODWA	Y	v	BASE F ATER-SURFAC/ FEET N	CE ELEVATION				
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
Ма	acDonald Brook			,								
(cc	ontinued)											
	Н	4,400 ¹	85	166	5.8	54.2	54.2	54.3	0.1			
	I	4,785 ¹	14	140	6.9	58.8	58.8	58.8	0.0			
	J	5,160 ¹	40	114	8.4	62.4	62.4	62.4	0.0			
	K	5,260 ¹	40	209	5.1	63.0	63.0	63.1	0.1			
		5,415 ¹	30	108	8.9 8.0	63.7 63.9	63.7	63.7	0.0 0.2			
	M N	5,460 ¹ 5,600 ¹	30 30	103 103	8.0 8.0	67.6	63.9 67.6	64.1 67.6	0.2			
	N O	5,785 ¹	73	418	2.0	70.0	70.0	70.0	0.0			
	P	5,840 ¹	160	806	1.0	73.0	73.0	73.2	0.0			
	Q	6,275 ¹	119	574	1.4	73.0	73.0	73.2	0.2			
	R	6,690 ¹	182	426	1.9	73.1	73.1	73.3	0.2			
	S	6,913 ¹	28	157	5.3	74.5	74.5	74.7	0.2			
	T	6,985 ¹	19	140	5.9	75.3	75.3	75.5	0.2			
	Ŭ	7,000 ¹	104	302	2.7	76.1	76.1	76.3	0.2			
	V	7,575 ¹	83	215	3.9	79.0	79.0	79.0	0.0			
	W	7,630 ¹	71	218	3.8	79.4	79.4	79.4	0.0			
	Х	7,749 ¹	127	331	2.5	80.4	80.4	80.6	0.2			
	Y	8,100 ¹	14	82	10.1	82.3	82.3	82.3	0.0			
	Z	8,160 ¹	11	62	13.4	84.4	84.4	84.4	0.0			
Me	adow Brook											
	А	808 ²	383	1.282	1.1	218.2	217.2 ³	217.4	0.2			
	В	1,772 ²	49	321	4.5	220.8	220.8	220.8	0.0			
	С	3.247 ²	69	204	7.0	228.0	228.0	228.0	0.0			
	D	4.483 ²	55	165	8.7	238.5	238.5	238.6	0.1			
	E	5.558 ²	71	453	3.1	247.0	247.0	247.0	0.0			
1Fe	F eet above confluence with Pase	6.789 ²	173	597	2.4	248.4	248.4	248.5	0.1			
² Fe	levation computed without cons	aque River	vater effects fi	rom Wanaque I	River							
TABL	FEDERAL EMERGEN	CY MANAGEMEN	T AGENCY		FLOODWAY DATA							
Ξ	PASSAIC	COUNTY	NJ									
Π		RISDICTION	3)		ΜΔΩΠΟ				NOOK			
1				MACDONALD BROOK – MEADOW BROOK								
0												

	FLOODING SOUR	CE		FLOODWA		W	BASE F ATER-SURFAC (FEET N	CE ELEVATION			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
	eadow Brook ontinued)										
	G H J K L M	7.744 ¹ 8.739 ¹ 10.083 ¹ 10.993 ¹ 12,294 ¹ 12,354 ¹ 14,000 ¹	535 89 262 662 82 74 145	3.178 261 2.531 4.658 383 215 609	0.5 5.5 0.4 0.2 2.3 3.8 1.4	249.5 252.9 262.7 262.7 263.1 270.3 282.8	249.5 252.9 262.7 262.7 263.1 270.3 282.8	249.7 253.0 262.7 262.7 263.1 270.3 282.8	0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0		
Me	eadow Brook Branch 2	,									
	A B C	276 ² 566 ² 1,645 ²	21 9 14	49 11 27	1.4 6.2 2.6	279.0 279.9 286.3	279.0 279.9 286.3	279.0 279.9 286.5	0.0 0.0 0.2		
Mo	olly Ann Brook										
1Fi 2Fi	A B C D E F G H I J K eet above confluence with the V eet above mouth		55 80 43 39 41 85 160 71 113 130 164	350 377 386 368 402 425 511 479 638 707 508	5.2 4.9 4.7 5.0 4.6 4.3 3.6 3.8 2.9 4.4 5.9	125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8	120.7^{4} 121.3^{4} 122.6^{4} 122.8^{4} 123.3^{4} 123.6^{4} 123.8^{4} 124.6^{4} 124.6^{4} 124.6^{4}	120.7 121.3 121.7 122.6 122.8 123.3 123.6 123.8 124.6 124.6 124.6	0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	eet above confluence with the F levation computed without cons		vater effects fr	rom the Passai	c River						
TABLE						FLOO	DWAY DA	ТА			
.E 10					MEADOW BROOK – MEADOW BROOK BRANCH 2 – MOLLY ANN BROOK						

			r			1						
	FLOODING SOU	RCE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	CE ELEVATION				
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
	olly Ann Brook ontinued)											
	L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ AK	4,498 4,586 5,290 5,343 5,835 6,567 6,691 7,431 7,574 8,108 8,803 8,975 9,453 9,619 10,016 10,160 10,459 10,677 10,882 11,109 11,155 11,291 11,420 11,675 11,787 12,008 Passaic River	58 66 52 55 47 72 67 55 110 92 60 65 61 33 31 28 42 74 52 34 29 72 43 46 44 73	461 475 252 319 285 528 532 397 519 408 458 493 469 433 292 278 356 613 358 312 310 451 336 505 333 298	$\begin{array}{c} 6.5\\ 6.3\\ 11.9\\ 9.4\\ 10.6\\ 5.7\\ 5.7\\ 7.6\\ 5.5\\ 7.0\\ 6.2\\ 5.8\\ 6.1\\ 6.6\\ 9.7\\ 10.2\\ 8.0\\ 4.6\\ 7.9\\ 9.1\\ 9.2\\ 6.3\\ 8.5\\ 5.6\\ 8.0\\ 8.9\end{array}$	$126.9 \\ 127.5 \\ 128.9 \\ 130.8 \\ 133.6 \\ 137.3 \\ 137.7 \\ 139.0 \\ 139.8 \\ 140.9 \\ 142.7 \\ 143.2 \\ 143.8 \\ 145.3 \\ 145.3 \\ 145.6 \\ 146.6 \\ 148.3 \\ 152.3 \\ 152.0 \\ 152.9 \\ 153.8 \\ 154.8 \\ 156.7 \\ 158.3 \\ 158.2 \\ 159.2 \\ 159.2 \\ 159.2 \\ 159.2 \\ 100000000000000000000000000000000000$	$126.9 \\ 127.5 \\ 128.9 \\ 130.8 \\ 133.6 \\ 137.3 \\ 137.7 \\ 139.0 \\ 139.8 \\ 140.9 \\ 142.7 \\ 143.2 \\ 143.8 \\ 145.3 \\ 145.6 \\ 146.6 \\ 148.3 \\ 152.3 \\ 152.0 \\ 152.9 \\ 153.8 \\ 154.8 \\ 156.7 \\ 158.3 \\ 158.2 \\ 159.2 \\ 159.2 \\ 159.2 \\ 159.2 \\ 159.2 \\ 159.2 \\ 159.2 \\ 150.$	127.0 127.6 129.0 130.8 133.6 137.3 137.7 139.0 139.8 140.9 142.7 143.2 143.8 145.4 145.7 146.7 148.5 152.3 152.0 152.9 153.8 154.8 156.8 158.4 158.3 159.4	$\begin{array}{c} 0.1\\ 0.1\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\$			
TABLE	FEDERAL EMERGEN				FLOODWAY DATA							
E 10	(ALL JURISDICTIONS)				MOLLY ANN BROOK							

	FLOODING SOUF	CE		FLOODWA	Y	v	BASE F ATER-SURFAC/ FEET N	CE ELEVATION			
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
	ly Ann Brook Itinued) AL AM AN AO AP AQ AR AQ AR AS AT AU AV AW AX AY AZ BA BB BC BD BE BF	12,637 12,867 13,110 13,644 14,482 15,979 17,004 17,856 18,482 19,698 20,721 21,551 22,164 22,959 23,537 24,129 24,888 25,891 26,673 27,555 ¹ 28,852 ¹	41 61 52 60 78 655 35 34 248 39 50 40 37 71 140 99 30 60 38 64 285	208 402 339 282 306 3,803 147 159 935 191 175 129 120 237 191 352 95 145 104 119 997	12.8 6.6 7.9 7.2 6.6 0.5 11.6 10.7 1.8 5.9 6.5 8.8 9.4 4.8 5.1 2.8 10.2 6.7 9.3 6.5 0.8	166.4 169.7 170.3 174.7 181.6 203.5 205.9 212.8 222.9 232.7 244.1 257.9 268.9 281.1 289.9 302.5 317.6 345.3 364.1 380.6 397.9	166.4 169.7 170.3 174.7 181.6 203.5 205.9 212.8 222.9 232.7 244.1 257.9 268.9 281.1 289.9 302.5 317.6 345.3 364.1 380.6 397.9	166.4 169.7 170.3 174.9 181.7 203.5 205.9 212.8 222.9 232.7 244.1 257.9 268.9 281.1 289.9 302.5 317.6 345.3 364.1 380.6 398.0	0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
TABLE	FEDERAL EMERGENO PASSAIC	CY MANAGEMEN	NJ				DWAY DA				
10					MOLLY ANN BROOK						

					Γ				
FLOODING SO	URCE		FLOODWA	Y	v	BASE F ATER-SURFAC/ FEET N/	CE ELEVATION		
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Molly Ann Brook Tributary 3				,					
A B C D E F	170 630 805 1,166 1,320 2,160	27 30 58 78 24 34	65 83 74 146 81 75	4.9 3.9 4.3 2.2 3.9 4.2	209.5 219.4 222.8 233.4 233.6 260.9	209.5 219.4 222.8 233.4 233.6 260.9	209.7 219.6 223.0 233.6 233.8 261.0	0.2 0.2 0.2 0.2 0.2 0.2 0.1	
Molly Ann Brook Tributary 4									
Molly Ann Brook Tributary 4 130 23 B 270 105 C 675 10 D 1,230 20 E 2,045 20 F 2,455 27 G 2,740 20 H 3,140 5 I 3,585 8 J 3,900 60 K 4,076 45 Molly Ann Brook Tributary 6				4.7 1.5 8.1 5.2 3.5 2.0 3.4 9.3 5.5 0.8 2.8 3.4 2.7 4.3 3.1 1.6 1.1 3.1	216.0 220.0 225.9 237.6 281.1 302.3 306.5 333.6 370.6 377.1 380.3 342.6 355.6 365.7 378.8 403.0 403.4 407.8	216.0 220.0 225.9 237.6 281.1 302.3 306.5 333.6 370.6 377.1 380.3 342.6 355.6 365.7 378.8 403.0 403.4 407.8	216.1 220.2 226.1 237.7 281.3 302.4 306.6 333.6 370.8 377.2 380.4 342.8 355.8 365.9 379.0 403.1 403.6 407.8	0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	
¹ Feet above confluence with M FEDERAL EMERGE PASSAI	NCY MANAGEMEN		FLOODWAY DATA						
ALL JU	C COUNTY, IRISDICTION		MOLLY ANN BROOK TRIBUTARY 3 – MOLLY ANN B TRIBUTARY 4 – MOLLY ANN BROOK TRIBUTAR						

	FLOODING SOURCE			Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
lorsetown Brook			,	//				
А	1,045	24	59	8.9	623.4	622.7 ²	622.7	0.0
В	1,880	28	83	6.3	630.6	630.6	630.6	0.0
С	1,900	73	176	2.9	636.1	636.1	636.1	0.0
D	2,255	31	73	7.1	636.9	636.9	637.1	0.2
E	2,424	77	265	2.0	641.7	641.7	641.7	0.0
F	3,338	187	155	3.4	653.2	653.2	653.2	0.0
G	3,500	56	126	3.1	656.5	656.5	656.5	0.0
Н	4,520	94	99	3.9	677.2	677.2	677.3	0.0
I	5,455	52	66	6.0	704.7	704.7	704.7	0.0
J	7,265	195	143	2.7	754.2	754.2	754.2	0.0
К	9,155 ¹	41	72	5.4	803.3	803.3	803.3	0.0
L	10,275 ¹	15	27	7.8	863.2	863.2	863.2	0.0
Μ	10,453 ¹	18	29	7.3	870.2	870.2	870.2	0.0
N	10,600 ¹	15	27	7.7	878.2	878.2	878.2	0.0
0	10,970 ¹	32	35	6.0	884.2	884.2	884.2	0.0
Р	11,086 ¹	24	70	3.0	893.6	893.6	893.7	0.1
Q	11,500 ¹	9	12	6.7	905.2	905.2	905.2	0.0
R	11,535 ¹	100	214	0.4	911.2	911.2	911.2	0.0
S	11,880 ¹	170	446	0.2	914.8	914.8	914.8	0.0
Т	12,650 ¹	26	22	3.2	914.8	914.8	914.8	0.0
U	12,756 ¹	26	16	4.5	922.0	922.0	922.0	0.0

¹Feet above mouth

TABLE

10

²Elevation computed without consideration of backwater effects from Belcher Creek

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

MORSETOWN BROOK

							BASE F	LOOD	
	FLOODING SOUF	RCE		FLOODWA	Y	WATER-SURFACE ELEVATION (FEET NAVD88)			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Naa	achtpunkt Brook A B C D E F G H I J achtpunkt Brook oper Reach) A B C D E F	$\begin{array}{r} 840^{1} \\ 1,680^{1} \\ 2,950^{1} \\ 4,870^{1} \\ 5,100^{1} \\ 5,700^{1} \\ 6,400^{1} \\ 7,400^{1} \\ 8,650^{1} \\ 9,150^{1} \\ \end{array}$	50 60 60 40 53 50 64 44 22 30 30 18 50 17 70 50	232 182 89 174 166 148 261 51 40 80 140 80 140 37 109 37 365 151	2.4 3.0 6.2 3.2 1.8 2.1 1.2 5.9 7.7 3.8 2.2 8.2 2.8 8.2 0.8 2.0	174.8 175.4 176.2 181.7 182.6 182.9 186.8 188.1 193.9 200.0 255.0 268.1 332.4 368.7 379.9 379.9	174.8 175.4 176.2 181.7 182.6 182.9 186.8 188.1 193.9 200.0 255.0 268.1 332.4 368.7 379.9 379.9	174.9 175.5 176.2 181.9 182.6 183.0 186.9 188.2 193.9 200.0 255.2 268.1 332.5 368.7 379.9 379.9	0.1 0.1 0.0 0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0
	et from confluence with Singa et from Chadwick Road	ic Brook							
TABLE	FEDERAL EMERGEN					FLOOI	DWAY DA	ТА	
LE 10	PASSAIC (ALL JUF	COUNTY, RISDICTION							

	FLOODING SOUF	RCE		FLOODWA	Y	V	BASE F ATER-SURFAC FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Pa	ickanack Brook			,	0200112)				
	A B C D E F	3.860 ¹ 5.354 ¹ 7.041 ¹ 8.452 ¹ 9.901 ¹ 11.345 ¹	500 700 1.600 1.725 812	2.747 7.464 6.782 4.057 17.901 6.194	0.5 0.2 0.3 0.1 0.2	175.7 175.7 175.7 175.7 181.4 181.4	174.9 ⁴ 174.9 ⁴ 174.9 ⁴ 174.9 ⁴ 181.4 181.4	175.0 175.1 175.1 175.1 181.4 181.4	0.1 0.2 0.2 0.2 0.0 0.0
	G	12.629 ¹	272	1.471	0.6	181.4	181.4	181.4	0.0
Pa	Issaic River A B C D E F G H I J K L M N O P Q R	$2,442^{2}$ $7,493^{2}$ $11,006^{2}$ $16,620^{2}$ $19,946^{2}$ $24,180^{2}$ $26,479^{2}$ $30,376^{2}$ $33,874^{2}$ $36,105^{2}$ $40,661^{2}$ $43,169^{2}$ $46,706^{2}$ $50,258^{2}$ $52,650^{2}$ $55,449^{2}$ $58,031^{2}$ $60,024^{2}$	430 ³ 277 ³ 282 ³ 269 ³ 342 ³ 543 ³ 403 ³ 458 ³ 853 ³ 804 ³ 400 ³ 413 ³ 421 ³ 328 ³ 290 ³ 333 ³ 283 ³ 285	8,029 5,792 6,006 5,838 5,876 6,775 7,323 7,502 9,602 7,393 5,411 4,278 4,902 4,076 3,709 4,163 3,322	3.1 4.4 4.2 4.3 4.3 3.2 2.9 2.9 2.9 2.9 2.9 2.9 4.0 5.0 4.4 5.3 5.8 5.2 6.5	9.7 10.4 11.0 11.9 13.4 16.0 18.3 19.0 30.2 31.2 32.5 33.2 34.6 35.5 36.8 38.3 39.5 41.0	9.7 10.4 11.0 11.9 13.4 16.0 18.3 19.0 30.2 31.2 32.5 33.2 34.6 35.5 36.8 38.3 39.5 41.0	9.8 10.5 11.0 12.0 13.6 16.2 18.5 19.2 30.2 31.2 32.5 33.3 34.7 35.6 36.8 38.4 39.6 41.1	0.1 0.1 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0
16	R eet above confluence with Pom	60,631 ²	315	4,139	5.2	41.0	41.0	41.1	0.1
2F0 3W	eet above confidence with Pom eet above County boundary /idth extends beyond County bo levation computed without cons	oundary	vater effects fr	om the Pompto	on River				
TABLE						FLOOI	DWAY DA	ТА	
_E 10	PASSAIC (ALL JUR	COUNIY, ISDICTION		PACKANACK BROOK — PASSAIC RIVER					

			T			1					
	FLOODING SOUF	ICE		FLOODWA	Y	v	BASE F ATER-SURFAC (FEET N	CE ELEVATION			
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
	ssaic River				,						
(co	S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ AK AL	62,088 65,092 68,332 71,194 73,245 74,102 75,984 80,607 84,761 86,876 91,422 93,290 96,876 98,842 100,585 104,440 106,817 111,085 113,208 114,296	363 233 269 527 170 315 277 432 586 234 333 434 205 296 1,236 2,356 2,356 2,877 $2,607^2$ $1,337^2$ 533^2	4,377 3,502 4,509 3,598 1,983 5,161 4,564 6,252 6,524 3,875 4,755 5,866 4,121 3,481 7,709 8,209 7,997 8,663 8,159 6,369	4.9 6.1 4.8 6.0 10.8 4.2 4.7 3.4 3.3 5.5 4.5 3.7 6.9 6.2 2.9 3.7 4.2 3.6 3.5 3.5 3.6	41.9 43.8 46.7 49.2 53.0 61.0 125.2 126.3 127.8 129.1 131.0 131.8 135.9 165.0 166.6 168.8 169.8 170.9 171.5 173.2	41.9 43.8 46.7 49.2 53.0 61.0 125.2 126.3 127.8 129.1 131.0 131.8 135.9 165.0 166.6 168.8 169.8 170.9 171.5 173.2	42.1 43.9 46.9 49.3 53.1 61.1 125.2 126.3 128.0 129.1 131.2 132.0 136.0 165.0 166.8 169.0 169.9 171.0 171.6 173.4	$\begin{array}{c} 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \end{array}$		
	eet above County boundary /idth extends beyond County bo	bundary									
TABL					FLOODWAY DATA						
E 10	(ALL JURISDICTIONS)					PASS		R			

FLOODING SOUR	ICE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Pearl Brook			,	,					
A	155	153	319	1.1	128.7	128.7	128.8	0.1	
В	367	20	187	1.8	142.5	142.5	142.5	0.0	
С	715	26	82	4.2	173.5	173.5	173.6	0.1	
D	1,050	25	45	7.7	178.5	178.5	178.6	0.1	
E	1,485	12	36	9.6	202.0	202.0	202.1	0.1	
F	1,790	15	38	9.2	215.7	215.7	215.7	0.0	
G	3,730	18	21	4.8	308.5	308.5	308.5	0.0	
Н	3,950	17	15	6.5	316.3	316.3	316.3	0.0	
I	4,275	90	304	0.3	324.2	324.2	324.2	0.0	
Peckman River									
A	450	322	1,194	3.5	130.6	124.4 ²	124.4	0.0	
В	1,000	91	465	9.0	130.6	124.4 ²	124.4	0.0	
С	1,500	228	1,349	3.1	130.6	129.6 ²	129.8	0.3	
D	2,300	293	1,401	3.0	130.6	130.3 ²	130.5	0.2	
E	3,100	93	529	7.9	132.4	132.4	132.5	0.1	
F	3,850	173	501	8.3	133.7	133.7	133.7	0.0	
G	4,850	114	700	5.0	138.2	138.2	138.2	0.0	
Н	5,480	315	1,443	4.3	141.0	141.0	141.2	0.2	
I	6,100	430	1,217	5.1	143.0	143.0	143.0	0.0	
J	6,850	485	1,282	4.9	146.8	146.8	147.0	0.2	
К	7,250	383	893	7.0	150.2	150.2	150.4	0.2	
L	8,050	368	1,255	5.0	156.7	156.7	156.7	0.0	
М	8,560	107	968	6.5	160.1	160.1	160.1	0.0	
Ν	9,000	127	588	10.7	163.8	163.8	163.8	0.0	
0	9,400	83	709	8.8	167.5	167.5	167.7	0.2	
Р	9,850	118	514	11.2	169.7	169.7	169.7	0.0	
Q	10,750	75	456	12.7	178.2	178.2	178.3	0.1	

¹Feet above confluence with the Passaic River

² Elevation computed without consideration of backwater effects from the Pompton River

FEDERAL EMERGENCY MANAGEMENT AGENCY

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

TABLE

10

FLOODWAY DATA

PEARL BROOK – PECKMAN RIVER

FLOODING SO	URCE		FLOODWA		BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)					
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Pequannock River				OLOOND)						
A	5,013 ¹	1,854	15,036	0.2	187.6	187.6	187.8	0.2		
B	7,434 ¹	1,950	15,478	0.2	187.6	187.6	187.8	0.2		
C	8,827 ¹	1,354	7,119	0.3	187.7	187.7	187.8	0.1		
D	10,642 ¹	291	2,280	1.1	187.7	187.7	187.9	0.2		
E	12,851	880 ²	6,044	1.0	192.3	192.3	192.5	0.2		
F	13,892	321 ²	1,491	4.1	193.2	193.2	193.4	0.2		
G	14,171	253 ²	1,331	4.6	193.7	193.7	193.8	0.1		
H	14,693	129 ²	937	6.6	194.4	194.4	194.6	0.2		
I	15,248	121 ²	939	6.6	195.9	195.9	196.0	0.1		
J	17,281	106 ²	950	6.5	199.9	199.9	200.0	0.1		
K	17,412	75 ²	751	8.2	200.2	200.2	200.3	0.1		
L	19,251	264 ²	841	7.3	207.7	207.7	207.9	0.2		
M	22,406	230 ²	1,682	3.7	225.6	225.6	225.8	0.2		
N	24,347	207 ²	860	7.2	233.6	233.6	233.7	0.1		
O	24,521	134 ²	811	7.6	235.0	235.0	235.0	0.0		
P	27,083	66 ²	520	11.8	250.6	250.6	250.8	0.2		
Q	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,128	5.5	254.9	254.9	254.9	0.0			
R		837	7.4	256.6	256.6	256.6	0.0			
S		623	9.9	257.7	257.7	257.8	0.1			
T	29,161	100 ²	718	8.3	266.4	266.4	266.6	0.2		
U	29,805	215 ²	610	9.8	272.9	272.9	273.1	0.2		
V	30,373	77 ²	489	12.2	280.2	280.2	280.3	0.1		
W	30,659	90 ²	730	8.2	285.2	285.2	285.2	0.0		
X	31,036	84 ²	465	12.8	287.0	287.0	287.0	0.0		
Y	31,381	69 ²	517	10.9	291.5	291.5	291.6	0.1		
Z	31,628	70 ²	601	9.4	293.9	293.9	293.9	0.0		
¹ Feet above confluence with th ² Width extends beyond County	•									
	ENCY MANAGEMEN			FLOODWAY DATA						
ALL JU	C COUNTY	•		PEQUANNOCK RIVER						

FLOODING S	OURCE		FLOODWA	Y	v	BASE F VATER-SURFAC	CE ELEVATION		
CROSS SECTION	DISTANCE ¹	WIDTH ² (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	(FEET N/ WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Pequannock River			,	0200112)					
(continued)									
` AA	32,536	80	472	11.9	301.1	301.1	301.2	0.1	
AB	32,997	132	735	7.7	305.4	305.4	305.6	0.2	
AC	33,842	79	572	9.8	310.3	310.3	310.4	0.1	
AD	33,941	118	1,215	4.6	322.1	322.1	322.1	0.0	
AE	34,392	98	958	5.8	322.5	322.5	322.5	0.0	
AF	34,716	78	601	9.3	323.1	323.1	323.1	0.0	
AG	34,767	65	655	8.5	326.4	326.4	326.5	0.1	
AH	34,823	75	842	7.2	328.0	328.0	328.0	0.0	
AI	35,342	111	553	10.1	329.2	329.2	329.4	0.2	
AJ	35,445	91	1,029	5.4	331.5	331.5	331.6	0.1	
AK	35,555	81	750	7.5	334.0	334.0	334.1	0.1	
AL	36,175	54	464	12.1	337.4	337.4	337.5	0.1	
AM	36,196	46	430	13.0	337.6	337.6	337.6	0.0	
AN	36,353	131	1,258	4.4	341.0	341.0	341.1	0.0	
AO	38,149	123	507	11.0	352.0	352.0	352.1	0.1	
AP	38,453	155	917	6.1	360.6	360.6	360.6	0.0	
AQ	38,820	120	595	9.4	362.1	362.1	362.3	0.2	
AR	39,147	84	557	10.0	364.8	364.8	364.8	0.0	
AS	40,154	218	692	8.1	372.8	372.8	372.8	0.0	
AG	40,134 42,330	105	658	8.4	398.4	398.4	398.5	0.0	
AU	42,330	55	407	13.5	402.2	402.2	402.3	0.1	
		-							
AV AW AX AY AZ ¹ Feet above confluence with ² Width extends beyond Cou	43,355 44,431 45,791 46,384 47,190 n the Pompton River	64 94 161 95 171	402 846 938 452 948	13.7 6.4 5.8 12.1 5.8	410.2 427.2 438.8 446.6 457.4	410.2 427.2 438.8 446.6 457.4	410.2 427.2 438.9 446.6 457.5	0.0 0.0 0.1 0.0 0.1	
*Data not available									
	GENCY MANAGEMEN		FLOODWAY DATA						
	AIC COUNTY				DEOLIAN				

PEQUANNOCK RIVER

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

10

FLOODING SOL	JRCE		FLOODWAY	,	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)				
CROSS SECTION	DISTANCE ¹	WIDTH ² (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Pequannock River									
continued)	47 70 4		000		400.0	100.0	100.0		
BA	47,724	99	609	9.0	463.0	463.0	463.0	0.0	
BB	49,824	101	587	9.3	488.4	488.4	488.5	0.1	
BC	51,594	102	569	9.3	505.3	505.3	505.4	0.1	
BD	53,012	131	521	10.1	513.6	513.6	513.6	0.0	
BE	53,801	97	1,228	4.3	521.7	521.7	521.7	0.0	
BF	54,567	122	772	6.8	526.4	526.4	526.4	0.0	
BG	57,349	188	569	9.1	555.3	555.3	555.3	0.0	
BH	57,600	130	1,263	4.1	565.8	565.8	565.8	0.0	
BI	58,396	413	2,641	3.0	580.9	580.9	580.9	0.0	
BJ	60,379	161	661	7.8	591.8	591.8	591.8 604.8	0.0 0.0	
BK	61,456	84	432 488	12.0 10.6	604.8 613.8	604.8 613.8	604.8 614.0	0.0	
BL BM	61,995 63,047	83 74	488 399	13.0	627.1	627.1	627.1	0.2	
	64,007	164	837	6.2	642.8	642.8	642.8	0.0	
BN BO	65,138	158	464	11.2	664.2	664.2	664.2	0.0	
BO BP	65,472	79	404	12.8	667.3	667.3	667.3	0.0	
BQ	66,621	511	2,593	2.0	741.9	741.9	741.9	0.0	
BR	68,110	829	4,495	1.2	742.4	742.4	742.4	0.0	
BS	77,354	309	1,108	3.4	742.4	742.4	742.4	0.0	
BU	83,665	260	963	3.6	753.1	753.1	753.2	0.0	
BU	84,429	199	1,032	3.3	755.5	755.5	755.5	0.1	
BV	84,598	137	1,028	3.3	756.1	756.1	756.1	0.0	
BW	86,113	96	517	5.4	759.0	759.0	759.2	0.2	
BX	87,038	70	453	6.1	762.8	762.8	762.9	0.1	
	01,000			0.1					

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

TABLE

10

PEQUANNOCK RIVER

	FLOODING SOU	IRCE		FLOODWAY	,	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)							
	CROSS SECTION	DISTANCE ¹	WIDTH ² (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE				
(co	quannock River ontinued) BY BZ CA CB CC CD CE CF CG	88,124 88,303 88,675 91,384 91,522 92,164 94,813 106,738 109,974	80 66 48 100 66 89 252 575 96	334 351 361 583 424 611 1,380 2,204 323	8.3 7.9 7.7 4.8 6.6 4.6 2.0 1.2 8.2	767.2 768.5 770.0 776.1 776.9 778.7 781.8 787.7 791.2	767.2 768.5 770.0 776.1 776.9 778.7 781.8 787.7 791.2	767.3 768.5 770.0 776.3 777.1 778.8 782.0 787.7 791.4	0.1 0.0 0.2 0.2 0.1 0.2 0.0 0.2				
	/idth extends beyond County												
TABLE						FLOOI	DWAY DA	ТА					
_E 10	(ALL JURISDICTIONS)					PEQUAN	NOCK RI	VER					

Pompton River FEET) SECOND FLOODWAY FLOODWAY Pompton River A 2.290 ¹ 2.504 ³ 23.197 1.7 173.7 172.0 ⁴ 172.2 0.2 B 4.889 ¹ 2.079 ³ 19.668 2.0 173.7 172.0 ⁴ 172.2 0.2 C 6.834 ¹ 1.193 ³ 9.780 4.0 173.7 172.9 ⁴ 173.1 0.2 D 7.828 ¹ 957 ³ 9.646 4.0 173.8 173.8 173.9 0.1 E 12.546 ¹ 1.555 ³ 18.282 2.1 175.3 175.3 175.9 0.2 G 19.194 ¹ 3.269 ³ 26.456 1.5 175.8 175.8 175.9 0.1 J 23.689 ¹ 2.513 ³ 10.914 3.5 176.4 176.4 176.5 0.1 J 25.628 ¹ 2.217 ³ 17.94 179.4 179.6 0.2 K 28.610 ¹ 1.308 ³ 10.058<													
CROSS SECTION DISTANCE WIDTH (FEET) SECTION AREA (FEET) MEAN VELOCITY (FEET PER SECOND) REGULATORY WITHOUT FLOODWAY WITH FLOODWAY INCREASI Pompton River A 2.200 ¹ 2.504 ³ 23.197 1.7 173.7 172.0 ⁴ 172.8 0.2 B 4.889 ¹ 2.079 ³ 19.668 2.0 173.7 172.6 ⁴ 172.8 0.2 D 7.828 ¹ 957 ³ 9.646 4.0 173.8 173.8 173.9 0.1 F 10.764 ¹ 5.250 ³ 43.388 0.9 175.7 175.7 175.9 0.2 G 19.194 ¹ 3.269 ³ 26.456 1.5 175.8 175.8 176.0 0.2 H 21.158 ¹ 3.810 ³ 16.991 2.3 175.8 175.8 176.0 0.2 K 22.610 ¹ 1.003 ³ 10.943 3.5 176.4 176.4 176.6 0.1 J 25.628 ¹ 2.217 ³ 17.792 2.2	FLOODING SOUF	RCE		FLOODWA	Y	N N	ATER-SURFAC	CE ELEVATION					
Pompton River A 2.2901 2.5043 23.197 1.7 173.7 172.0 ⁴ 172.2 0.2 B 4.8891 2.0793 19.668 2.0 173.7 172.0 ⁴ 172.2 0.2 C 6.8341 1.1393 9.760 4.0 173.7 172.6 ⁴ 172.8 0.2 D 7.8221 9573 9.64 4.0 173.8 173.8 173.9 0.1 E 12.5461 1.5553 18.282 2.1 175.3 175.4 0.1 F 16.7641 5.2503 43.388 0.9 175.7 175.7 175.9 0.2 H 21.1581 3.8103 16.991 2.3 175.8 175.8 175.8 175.9 0.1 J 22.6281 2.2173 1.7.92 2.2 179.4 179.4 179.6 0.2 K 28.6101 1.3083 10.058 3.8 182.6 182.7 0.1 M <t< th=""><th>CROSS SECTION</th><td>DISTANCE</td><td></td><td>AREA (SQUARE</td><td>VELOCITY (FEET PER</td><td>REGULATORY</td><td></td><td></td><td>INCREASE</td></t<>	CROSS SECTION	DISTANCE		AREA (SQUARE	VELOCITY (FEET PER	REGULATORY			INCREASE				
B 4.889 ¹ 2.079 ³ 19.668 2.0 173.7 172.6 ⁴ 172.8 0.2 C 6.834 ¹ 1.193 ³ 9.780 4.0 173.7 172.9 ⁴ 173.1 0.2 D 7.828 ¹ 957 ³ 9.646 4.0 173.7 172.9 ⁴ 173.3 173.9 0.1 E 12.546 ¹ 1.555 ³ 18.282 2.1 175.3 175.3 175.4 0.1 F 16.764 ¹ 5.250 ³ 43.388 0.9 175.7 175.7 175.9 0.2 G 19.194 ¹ 3.269 ³ 2.6.456 1.5 175.8 175.8 175.8 176.4 176.4 0.2 H 21.158 ¹ 3.810 ³ 10.958 3.8 182.6 182.6 182.7 0.1 J 25.628 ¹ 1.308 ³ 10.058 3.8 182.6 182.6 182.7 0.1 L 30.712 ¹ 1.503 ³ 19.380 2.0 183.1 183	Pompton River			,	0200112)								
M 32.519 ¹ 1.409 ³ 15.531 2.5 183.3 183.3 183.5 0.2 N 34.569 ¹ 1.790 ³ 14.250 2.7 183.5 183.5 183.6 0.1 O 35.232 ¹ 889 ³ 13.324 2.9 186.9 186.9 187.0 0.1 Pompton River Unnamed Tributary A 2.004 ² 51 122 1.9 175.7 165.7 ⁵ 165.9 0.2 B 2.923 ² 55 158 1.5 175.7 166.5 ⁵ 166.6 0.1 ¹ Feet above confluence with the Pompton River ² Feet above confluence with the Passaic River ³ Width extends beyond County boundary ⁴ Elevation determined without consideration of backwater effects from the Passaic River ⁵ Elevation determined without consideration of control effects from the Pompton River	B C D E F G H I J	4.889 ¹ 6.834 ¹ 7.828 ¹ 12.546 ¹ 16.764 ¹ 19.194 ¹ 21.158 ¹ 23.889 ¹ 25.628 ¹ 28.610 ¹	2.079 ³ 1.193 ³ 957 ³ 1.555 ³ 5.250 ³ 3.269 ³ 3.810 ³ 2.553 ³ 2.217 ³ 1.308 ³	19.668 9.780 9.646 18.282 43.388 26.456 16.991 10.914 17.792 10.058	2.0 4.0 2.1 0.9 1.5 2.3 3.5 2.2	173.7 173.7 173.8 175.3 175.7 175.8 175.8 175.8 176.4 179.4	172.6 ⁴ 172.9 ⁴ 173.8 175.3 175.7 175.8 175.8 175.8 176.4 179.4	172.8 173.1 173.9 175.4 175.9 175.9 176.0 176.5 179.6	0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2				
Tributary A 2.004² 51 122 1.9 175.7 165.75 165.9 0.2 B 2.923² 55 158 1.5 175.7 166.55 166.6 0.1 ¹ Feet above confluence with the Pompton River ² Feet above confluence with the Passaic River ⁴ Elevation determined without consideration of backwater effects from the Passaic River ⁵ Elevation determined without consideration of control effects from the Pompton River ⁹ Width extends beyond County boundary FEFERAL EMERGEMENT ACCOMENT ⁴ Elevation determined without consideration of control effects from the Pompton River	N	M 32.519 ¹ 1.409 ³ 1 N 34.569 ¹ 1.790 ³ 1				183.3 183.5	183.3 183.5	183.5 183.6	0.2 0.1				
A 2.004 ² 51 122 1.9 175.7 165.7 ⁵ 165.9 0.2 B 2.923 ² 55 158 1.5 175.7 166.5 ⁵ 166.6 0.1 ¹ Feet above confluence with the Pompton River ² Feet above confluence with the Passaic River ⁴ Elevation determined without consideration of backwater effects from the Passaic River ⁵ Elevation determined without consideration of control effects from the Pompton River ¹ Width extends beyond County boundary ⁴ Elevation determined without consideration of control effects from the Pompton River													
² Feet above confluence with the Passaic River ³ Width extends beyond County boundary ⁵ Elevation determined without consideration of control effects from the Pompton River	A												
FEDERAL EMERGENCY MANAGEMENT AGENCY	² Feet above confluence with the	Passaic River											
FLOODWAY DATA	TAB	TAB					FLOODWAY DATA						
Image: PASSAIC COUNTY, NJ (ALL JURISDICTIONS)POMPTON RIVER – POMPTON RIVER UNIT1010	(ALL JURISDICTIONS)				POMPT	ON RIVER -	- POMPTO	ON RIVER	UNIT				

BASE FLOOD										
	FLOODING SOU	RCE		FLOODWA	Y	v	BASE F ATER-SURFAC/ FEET N/	CE ELEVATION		
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Pos	st Brook									
	A B C D E F G H I J K L M N O	32,680 32,760 33,500 33,920 34,006 34,695 35,250 36,430 36,560 36,610 37,675 37,750 39,151 40,200 40,360	113 138 205 15 32 289 132 61 73 67 89 39 39 19 80 157	95 220 184 79 159 1,107 364 161 161 49 142 42 42 16 31 1,398	$\begin{array}{c} 3.0\\ 1.3\\ 1.5\\ 3.6\\ 1.8\\ 0.3\\ 0.5\\ 1.2\\ 1.2\\ 3.9\\ 1.3\\ 4.7\\ 5.3\\ 2.8\\ 0.1\end{array}$	863.0 868.9 871.1 871.4 872.6 872.7 872.8 877.4 879.0 882.1 882.6 891.3 893.9 940.0 959.0	863.0 868.9 871.1 871.4 872.6 872.7 872.8 877.4 879.0 882.1 882.6 891.3 893.9 940.0 959.0	863.0 868.9 871.1 871.6 872.8 872.9 873.0 877.4 879.1 882.1 882.6 891.3 893.9 940.0 959.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.0\\ 0.0\\$	
	P	43,260	63	2.7	973.7	973.7	973.7	0.0		
Pos	st Brook Branch 1 A B C D E	455 850 1,055 2,720 2,960	46 48 151 38 12	133 206 1,213 141 62	1.9 1.2 0.2 1.8 2.5	212.7 213.7 219.1 219.1 219.6	212.7 213.7 219.1 219.1 219.6	212.9 213.8 219.2 219.2 219.8	0.2 0.1 0.1 0.1 0.2	
¹ Fe	eet above mouth							•		
TABLE				FLOODWAY DATA						
_E 10	(ALL JURISDICTIONS)				POST	BROOK – P	OST BROC	K BRANCH	11	

	FLOODING SOUF	RCE		FLOODWA	Y	v	BASE F ATER-SURFAC FEET N	CE ELEVATION			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Po	ost Book Branch 2			, , , , , , , , , , , , , , , , , , ,	,						
	A B C D E F G	550 ¹ 1,030 ¹ 1,360 ¹ 1,615 ¹ 2,170 ¹ 2,780 ¹ 2,870 ¹	15 17 58 42 246 12 9	64 77 48 93 199 19 54	2.5 2.1 3.4 1.7 0.8 4.5 1.6	221.2 225.4 227.3 229.4 229.8 236.4 242.1	221.2 225.4 227.3 229.4 229.8 236.4 242.1	221.4 225.5 227.4 229.5 230.0 236.4 242.2	0.2 0.1 0.1 0.2 0.0 0.1		
Po	st Brook Branch 3										
	A B C D E F G H I J K L st Brook Branch 4 A B C D	$190^{2} \\ 375^{2} \\ 1,010^{2} \\ 1,130^{2} \\ 2,700^{2} \\ 2,975^{2} \\ 3,053^{2} \\ 3,705^{2} \\ 3,705^{2} \\ 3,790^{2} \\ 3,840^{2} \\ 4,600^{2} \\ 5,365^{2} \\ 130^{3} \\ 385^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,001^{3} \\ 1,130^{3} \\ 1,001^{3} \\ $	133 22 108 172 79 112 95 54 11 96 104 108 6 41 58 12	283 70 180 914 470 143 337 44 24 380 54 64 4 24 9 7	0.9 3.6 1.4 0.3 0.5 1.4 0.6 4.6 8.3 0.5 3.7 3.1 4.8 0.9 2.3 1.5	872.8 874.1 876.1 884.8 901.6 904.2 908.8 909.4 911.5 912.7 914.3 960.6 878.1 878.1 879.4 879.8 882.0	872.8 874.1 876.1 884.8 901.6 904.2 908.8 909.4 911.5 912.7 914.3 960.6 878.1 879.4 879.8 882.0	873.0 874.2 876.3 884.8 901.6 904.2 908.8 909.4 911.5 912.7 914.3 960.6 878.1 878.1 879.4 879.8 882.0	0.2 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	E eet above confluence with Post		10	3	3.3	893.7	893.7	893.7	0.0		
	eet above confluence with Post eet above confluence with Post										
TABLE						FLOOI	DWAY DA	ТА			
-E 10	PASSAIC (ALL JUR	COUNTY, RISDICTION		P	POST BROOK BRANCH 2 - POST BROOK BRANCH 3 POST BROOK BRANCH 4						

DISTANCE ¹ 30 430 570 860	WIDTH (FEET) 36 44	FLOODWA SECTION AREA (SQUARE FEET) 111	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	/ATER-SURFAC (FEET N/ WITHOUT FLOODWAY		INCREASE
30 430 570	(FEET) 36 44	AREA (SQUARE FEET) 111	VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT	WITH	INCREASE
430 570	44						
430 570	44						
1,921 2,192 4,565 4,810 5,375 5,615 6,725 7,520 7,645 8,415 9,310 9,910 10,080 10,235 12,115 12,935 13,151 13,880	36 61 54 74 180 171 49 140 216 63 43 174 148 9 76 76 52 96 50 36	$\begin{array}{c} 173\\ 91\\ 295\\ 325\\ 350\\ 1,145\\ 1,184\\ 269\\ 611\\ 1,204\\ 225\\ 197\\ 434\\ 475\\ 46\\ 498\\ 619\\ 310\\ 476\\ 256\\ 105 \end{array}$	7.4 4.7 9.0 2.8 2.5 2.3 0.7 0.7 3.0 1.0 0.5 2.8 3.0 1.4 1.2 12.9 1.2 0.7 1.4 0.9 1.3 3.2	201.3 201.3 205.9 208.3 209.4 211.0 212.7 213.6 213.7 213.7 215.2 216.4 216.9 217.2 220.6 222.7 222.7 222.7 222.7 223.2 223.3	192.2^{2} 197.1^{2} 199.5^{2} 205.9 208.3 209.4 211.0 212.7 212.7 213.6 213.7 215.2 216.4 216.9 217.2 220.6 222.7 222.7 222.7 222.7 222.7 223.2 223.3	192.2 197.1 199.5 205.9 208.3 209.4 211.0 212.9 213.8 213.9 213.9 213.9 215.3 216.6 217.1 217.2 220.7 222.9 222.9 222.9 222.9 223.4 223.5	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.2\\ 0.2$
anaque River vater effects from t	the Wanaque	e River					
FEDERAL EMERGENCY MANAGEMENT AGENCY					DWAY DA	ТА	
	4,565 4,810 5,375 5,615 6,725 7,520 7,645 8,415 9,310 9,910 10,080 10,235 12,115 12,935 13,151 13,880 maque River ater effects from	4,565 180 4,810 171 5,375 49 5,615 140 6,725 216 7,520 63 7,645 43 8,415 174 9,310 148 9,910 9 10,080 76 12,115 52 12,935 96 13,151 50 13,880 36	4,565 180 1,145 4,810 171 1,184 5,375 49 269 5,615 140 611 6,725 216 1,204 7,520 63 225 7,645 43 197 8,415 174 434 9,310 148 475 9,910 9 46 10,080 76 498 10,235 76 619 12,115 52 310 12,935 96 476 13,151 50 256 13,880 36 105	4,565 180 1,145 0.7 4,810 171 1,184 0.7 5,375 49 269 3.0 5,615 140 611 1.0 6,725 216 1,204 0.5 7,520 63 225 2.8 7,645 43 197 3.0 8,415 174 434 1.4 9,310 148 475 1.2 9,910 9 46 12.9 10,080 76 498 1.2 10,235 76 619 0.7 12,115 52 310 1.4 12,935 96 476 0.9 13,151 50 256 1.3 13,880 36 105 3.2	4,565 180 1,145 0.7 211.0 4,810 171 1,184 0.7 212.7 5,375 49 269 3.0 212.7 5,615 140 611 1.0 213.6 6,725 216 1,204 0.5 213.7 7,520 63 225 2.8 213.7 7,645 43 197 3.0 215.2 8,415 174 434 1.4 216.4 9,310 148 475 1.2 216.9 9,910 9 46 12.9 217.2 10,080 76 498 1.2 220.6 10,235 76 619 0.7 222.7 12,115 52 310 1.4 222.7 12,935 96 476 0.9 222.7 13,151 50 256 1.3 223.2 13,880 36 105 3.2 223.3	4,565 180 1,145 0.7 211.0 211.0 4,810 171 1,184 0.7 212.7 212.7 5,375 49 269 3.0 212.7 212.7 5,615 140 611 1.0 213.6 213.6 6,725 216 1,204 0.5 213.7 213.7 7,520 63 225 2.8 215.2 215.2 8,415 174 434 1.4 216.4 216.9 9,310 148 475 1.2 216.9 216.9 9,910 9 46 12.9 217.2 217.2 10,080 76 498 1.2 220.6 220.6 10,235 76 619 0.7 222.7 222.7 12,15 52 310 1.4 222.7 222.7 12,935 96 476 0.9 222.7 222.7 13,151 50 256 1.3 223.2 223.2 13,880 36 105 3.2	4,565 180 1,145 0.7 211.0 211.0 211.0 4,810 171 1,184 0.7 212.7 212.7 212.9 5,375 49 269 3.0 212.7 212.7 212.9 5,615 140 611 1.0 213.6 213.7 213.9 7,520 63 225 2.8 213.7 213.7 213.9 7,645 43 197 3.0 215.2 215.2 215.3 8,415 174 434 1.4 216.4 216.4 216.6 9,310 148 475 1.2 216.9 217.2 217.2 10,080 76 498 1.2 220.6 220.6 220.7 222.9 12,115 52 310 1.4 222.7 222.7 222.9 12,935 96 476 0.9 222.7 222.7 222.9 13,151 50 256 1.3 223.2 223.2 223.4 13,880 36 105 3.2

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

10

POSTS BROOK AND RAINBOW VALLEY LAKE

	FLOODING SOUF	RCE		FLOODWA	Y	Ŵ	BASE F ATER-SURFAC/ FEET N/	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Ra	mapo River			,	/				
Rir	A B C D E F G H I J K L ngwood Creek A B C D E F G H I J K	$\begin{array}{c} 1,780^1\\ 4,342^1\\ 5,924^1\\ 7,046^1\\ 8,614^1\\ 9,619^1\\ 10,664^1\\ 12,058^1\\ 13,484^1\\ 17,345^1\\ 18,349^1\\ 19,584^1\\ 19,584^1\\ \end{array}$	542^3 2,332 ³ 2,155 2,294 1,228 668 362 702 383 1,006 1,095 1,381 1,411 768 398 710 1,054 359 649 344 431 331 144	5051 7667 21,103 14,560 6,566 5,470 5,275 6,667 4,390 9,428 10,994 3,892 51,601 27,342 11,458 16,074 14,329 3,139 2,000 2,885 1,277 1,241 1,140	$\begin{array}{c} 2.1\\ 2.0\\ 1.3\\ 1.7\\ 3.2\\ 3.4\\ 1.2\\ 0.9\\ 1.4\\ 1.5\\ 1.3\\ 3.6\\ \end{array}$ $\begin{array}{c} 0.1\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.8\\ 1.2\\ 0.8\\ 1.9\\ 2.0\\ 2.1\\ \end{array}$	187.2 187.4 187.9 188.1 189.7 190.3 202.5 202.6 202.6 202.8 202.9 202.9 202.9 306.7 306.7 306.7 307.6 307.6 307.6 307.6 307.6 307.6 308.0 321.3 321.7 328.2 338.6	187.2 187.4 187.9 188.1 189.7 190.3 202.5 202.6 202.6 202.8 202.9 202.9 202.9 306.7 306.7 306.7 306.7 307.6 307.6 307.6 307.6 307.6 307.6 308.0 321.3 321.7 328.2 338.6	187.3 187.6 188.0 188.3 189.9 190.5 202.6 202.6 202.6 202.8 202.9 202.9 202.9 306.7 306.7 306.7 306.7 307.6 307.6 307.6 307.6 307.6 307.6 307.6 307.6 307.6 308.2 321.3 321.9 328.4 338.6	$\begin{array}{c} 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
² Fe	eet above confluence with the l eet above confluence with War /idth extends beyond County b	naque Reservoir							
TABLE						FLOOD	DWAY DA	ТА	
_E 10	PASSAIC (ALL JUF	COUNTY, RISDICTION			RAMA	PO RIVER	– RINGW	OOD CRE	EK

						Ι			1
	FLOODING SOUF	RCE		FLOODWA	Y	v	BASE F ATER-SURFAC/ FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Rin	gwood Creek Branch 1 A	1,050 ¹	46	38	3.4	334.1	334.1	334.1	0.0
	В	1,144 ¹	27	52	2.5	338.1	338.1	338.1	0.0
Sin	gac Brook								
	A	1.669 ²	196	927	2.9	173.1	165.6 ³	165.7	0.1
	В	4.036 ²	165	695	3.8	173.1	168.8 ³	168.8	0.0
	C	5.445 ²	793	2.666	0.9	173.1	170.5 ³	170.5	0.0
	D E	6.909 ²	865	2.184	1.1	173.1	171.5 ³	171.6	0.1
	F	8.343 ²	314	1.379	1.8	173.2	173.2	173.3	0.1
	G	9.654 ²	510	1,171	1.9	174.6	174.6	174.7	0.1
	H	10.931 ²	562	2,169	1.0	175.9	175.9	176.0	0.1
	1	11.992 ² 13.146 ²	335 472	988 1.922	2.2 1.1	179.9 180.2	179.9 180.2	180.0 180.2	0.1 0.0
	·	14.371 ²	472	1.319	1.6	181.0	181.0	181.1	0.0
	ĸ	15.347 ²	446	1.726	1.1	181.8	181.8	181.9	0.1
	L	16.298 ²	431	930	2.1	182.5	182.5	182.6	0.1
	M	17.389 ²	130	367	5.3	184.6	184.6	184.8	0.2
	Ν	18,434 ²	168	430	4.5	187.7	187.7	187.9	0.2
	0	19.554 ²	83	328	6.0	191.3	191.3	191.3	0.0
	Р	20.892 ²	435	661	3.0	196.5	196.5	196.6	0.1
	Q	21.888 ²	87	346	5.6	201.2	201.2	201.2	0.0
	R	22.955 ²	82	204	6.8	205.0	205.0	205.0	0.0
	S	24.032 ²	29	153	9.0	208.7	208.7	208.7	0.0
	Т	25.250 ²	35	162	7.7	217.7	217.7	217.7	0.0
	U	26.522 ²	51	211	5.9	226.5	226.5	226.5	0.0
	V	27.774 ²	283	425	2.9	234.2	234.2	234.2	0.0
¹ Fe	et above confluence with Ring	wood Creek							11
	et above confluence with the l	•							
	evation computed without cons		vater effects f	rom the Passai	c River				
_ 1	FEDERAL EMERGEN	CY MANAGEMEN	T AGENCY						
TABLE							DWAY DA	ТΔ	
	DAGGAIC	COUNTY							
Π	PASSAIC	•							
<u> </u>	(ALL JUF	RISDICTION	S)	RIN	JGWOOD	CREEK B	RANCH 1	- SINGAC	
0	,		,						

FLOODING SOURCE FLOODWAY BASE FLOOWAY CROSS SECTION DISTANCE' WIDTH (FEET) SECTION (SQUARE) VELOCITY (FEET PER SECOND) REGULATORY WITHOUT FLOODWAY F Singac Brook 23,75 237.5 237.5 237.5 247.2 247.2 Y 30.795 157 482 1.4 256.1 256.1 256.1 AA 32.200 30 142 4.7 264.8 264.8 AB 32.832 28 166 4.1 266.0 286.0 AD 34.399 363 3009 0.2 286.0 286.0 286.0 AE 35.314 550 100 4.3 290.6 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 286.0 286.0 AF 36.176 483 100 4.3						
CROSS SECTION DISTANCE! WIDTH (FEET) SECTION AREA (SQUARE FEET) MEAN (FEET PER SCOND) REGULATORY WITHOUT FLOODWAY F Singac Brook 0 143 8.7 237.5 237.5 237.5 237.5 237.5 237.5 247.2		l				
CROSS SECTION DISTANCE ¹ WIDTH (FEET) SECTION (FEET) REAN (SQUARE FEET) REGULATORY WITHOUT FLOODWAY F Singac Brook W 28.636 73 143 8.7 237.5 237.5 237.5 Y 30.795 157 482 1.4 256.1 256.1 Z 31.513 53 116 5.8 259.7 259.7 AB 32.832 28 166 4.1 266.6 266.0 AC 33.426 40 71 6.6 273.9 273.9 AD 34.399 363 3009 0.2 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AF 36.176 483 1593 0.3 286.0						
W 28.636 73 143 8.7 237.5 237.5 X 29,799 38 127 9.8 247.2 247.2 Y 30.795 157 482 1.4 256.1 256.1 Z 31.513 53 116 5.8 259.7 259.7 AA 32.200 30 142 4.7 264.8 264.8 AB 32.832 28 166 4.1 268.6 286.0 AC 33.426 40 71 6.6 273.9 273.9 AD 34.399 363 3009 0.2 286.0 286.0 AE 35.314 550 4976 0.1 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 288.3 298.3	WITH	INCREASE				
X 29.799 38 127 9.8 247.2 247.2 Y 30.795 157 482 1.4 256.1 256.1 Z 31.513 53 116 5.8 259.7 259.7 AA 32.200 30 142 4.7 264.8 264.8 AB 32.832 28 166 4.1 268.6 268.6 AC 33.426 40 71 6.6 273.9 273.9 AD 34.399 363 3009 0.2 286.0 286.0 AE 35.314 550 4976 0.1 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 D 1,130 60 32 10.7 128.0 121.82						
Y 30.795 157 482 1.4 256.1 256.1 Z 31.513 53 116 5.8 259.7 259.7 AA 32.200 30 142 4.7 264.8 264.8 AB 32.832 28 166 4.1 268.6 268.6 AC 33.426 40 71 6.6 273.9 273.9 AD 34.399 363 3009 0.2 286.0 286.0 AE 35.314 550 4976 0.1 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 288.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 B 720 90 44 7.8 125.9 118.8²	237.5	0.0				
Z 30.793 157 1402 1.4 250.1 250.1 AA 32.200 30 116 5.8 259.7 259.7 AA 32.200 30 142 4.7 264.8 264.8 AB 32.832 28 166 4.1 268.6 268.6 AC 33.426 40 71 6.6 273.9 273.9 AD 34.399 363 3009 0.2 286.0 286.0 AE 35.314 550 4976 0.1 286.0 286.0 AE 36.176 483 1593 0.3 286.0 286.0 AG 36.176 483 1593 0.3 286.0 286.0 AG 36.176 483 1593 0.3 286.0 286.0 AG 37.09 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.	247.2	0.0				
AA 32.200 30 142 4.7 264.8 264.8 AB 32.832 28 166 4.1 268.6 268.6 AC 33.426 40 71 6.6 273.9 273.9 AD 33.399 363 3009 0.2 286.0 286.0 AE 35.314 550 4976 0.1 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook	256.1	0.0				
AA 32.200 30 142 4.7 264.8 264.8 AB 32.832 28 166 4.1 268.6 268.6 AC 33.426 40 71 6.6 273.9 273.9 AD 34.399 363 3009 0.2 286.0 286.0 AE 35.314 550 4976 0.1 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 286.0 AG 37.309 65 1100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Sippery Rock Brook	259.7	0.0				
AC 33.426 40 71 6.6 273.9 273.9 AD 34.399 363 3009 0.2 286.0 286.0 AE 35.314 550 4976 0.1 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook	264.8	0.0				
AC 33.426 40 71 6.6 273.9 273.9 AD 34.399 363 3009 0.2 286.0 286.0 AE 35.314 550 4976 0.1 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook	268.6	0.0				
AD 34.399 363 3009 0.2 286.0 286.0 AF 35.314 550 4976 0.1 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook	273.9	0.0				
AE 35.314 550 4976 0.1 286.0 286.0 AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook	286.0	0.0				
AF 36.176 483 1593 0.3 286.0 286.0 AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook 125.9 118.82 B 720 90 44 7.8 125.9 121.82 C 1,000 70 125 2.7 127.1 127.1 D 1,130 60 32 10.7 128.0 128.0 128.0 E 1,360 60 97 3.5 131.0 131.0 131.0 F 1,660 65 181 1.9 134.9 134.	286.0	0.0				
AG 37.309 65 110 4.3 290.6 290.6 AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook	286.0	0.0				
AH 38.277 91 100 4.7 298.3 298.3 AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook	290.6	0.0				
AI 39.390 44 80 5.9 307.2 307.2 Slippery Rock Brook	298.4	0.1				
A 540 80 39 8.7 125.9 118.8 ² B 720 90 44 7.8 125.9 121.8 ² C 1,000 70 125 2.7 127.1 127.1 D 1,130 60 32 10.7 128.0 128.0 E 1,360 60 97 3.5 131.0 131.0 F 1,660 65 181 1.9 134.9 134.9 G 1,870 40 49 6.9 135.5 135.5 H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 <t< td=""><td>307.2</td><td>0.0</td></t<>	307.2	0.0				
A 540 80 39 8.7 125.9 118.8 ² B 720 90 44 7.8 125.9 121.8 ² C 1,000 70 125 2.7 127.1 127.1 D 1,130 60 32 10.7 128.0 128.0 E 1,360 60 97 3.5 131.0 131.0 F 1,660 65 181 1.9 134.9 134.9 G 1,870 40 49 6.9 135.5 135.5 H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 <t< td=""><td></td><td></td></t<>						
B 720 90 44 7.8 125.9 121.8 ² C 1,000 70 125 2.7 127.1 127.1 D 1,130 60 32 10.7 128.0 128.0 E 1,360 60 97 3.5 131.0 131.0 F 1,660 65 181 1.9 134.9 134.9 G 1,870 40 49 6.9 135.5 135.5 H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	118.8	0.0				
C 1,000 70 125 2.7 127.1 127.1 D 1,130 60 32 10.7 128.0 128.0 E 1,360 60 97 3.5 131.0 131.0 F 1,660 65 181 1.9 134.9 134.9 G 1,870 40 49 6.9 135.5 135.5 H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	121.8	0.0				
D 1,130 60 32 10.7 128.0 128.0 E 1,360 60 97 3.5 131.0 131.0 F 1,660 65 181 1.9 134.9 134.9 G 1,870 40 49 6.9 135.5 135.5 H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	127.1	0.0				
E 1,360 60 97 3.5 131.0 131.0 F 1,660 65 181 1.9 134.9 134.9 G 1,870 40 49 6.9 135.5 135.5 H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	128.0	0.0				
F 1,660 65 181 1.9 134.9 134.9 G 1,870 40 49 6.9 135.5 135.5 H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	131.0	0.0				
G 1,870 40 49 6.9 135.5 135.5 H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	134.9	0.0				
H 2,000 40 38 8.8 138.1 138.1 I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	135.5	0.0				
I 2,370 100 197 1.7 152.7 152.7 J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	138.1	0.0				
J 2,465 85 49 6.9 153.6 153.6 K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	152.7	0.0				
K 2,515 150 103 3.3 157.4 157.4 L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	152.7	0.0				
L 2,690 70 38 9.1 158.0 158.0 M 2,904 23 71 4.2 161.4 161.4	153.6					
M 2,904 23 71 4.2 161.4 161.4 ¹ Feet above confluence with the Passaic River		0.0				
¹ Feet above confluence with the Passaic River	158.0 161.6	0.0 0.2				
	0.101	0.2				
FEDERAL EMERGENCY MANAGEMENT AGENCY						
	. — .					
▶ I FLOODWAY DAT	FLOODWAY DATA					
FEDERAL EMERGENCY MANAGEMENT AGENCY FLOODWAY DATA PASSAIC COUNTY, NJ						
PASSAIC COUNTY, NJ						

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

10

SINGAC BROOK – SLIPPERY ROCK BROOK

FLOODING SOL	RCE		FLOODWA		v	BASE F ATER-SURFAC (FEET N	CE ELEVATION			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Slippery Rock Brook (continued)			,	/						
N O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ AK	3,021 3,395 4,178 4,722 4,893 5,172 5,356 5,561 5,859 6,275 6,857 6,911 7,108 8,504 8,686 9,124 9,406 9,743 10,158 10,384 10,537 10,855 11,190 11,353	6 6 26 27 28 12 19 15 14 20 16 17 173 230 13 16 43 23 14 63 69 118 37 139	$\begin{array}{c} 26\\ 25\\ 42\\ 85\\ 42\\ 45\\ 63\\ 35\\ 44\\ 61\\ 36\\ 36\\ 1,215\\ 1,291\\ 28\\ 32\\ 62\\ 97\\ 41\\ 132\\ 66\\ 463\\ 65\\ 563\\ \end{array}$	$ \begin{array}{r} 11.8 \\ 11.8 \\ 7.2 \\ 3.5 \\ 7.1 \\ 6.7 \\ 4.8 \\ 8.6 \\ 6.9 \\ 4.9 \\ 8.4 \\ 8.3 \\ 0.2 \\ 0.2 \\ 8.5 \\ 7.4 \\ 3.9 \\ 2.5 \\ 5.9 \\ 1.8 \\ 3.6 \\ 0.5 \\ 3.7 \\ 0.4 \\ \end{array} $	168.5 183.5 241.9 246.5 249.7 262.5 264.4 300.4 305.4 308.6 319.2 320.6 321.7 322.7 328.8 341.0 358.1 369.8 370.8 374.1 375.6 377.7 381.1	168.5 183.5 241.9 246.5 249.7 262.5 264.4 300.4 305.4 308.6 319.2 320.4 321.7 322.7 328.8 341.0 358.1 369.8 370.8 374.1 375.6 377.7 381.1	168.5 183.5 242.0 246.5 249.7 262.5 264.6 300.4 305.4 308.6 319.2 320.6 321.7 322.7 328.9 341.2 358.1 369.8 370.8 374.3 375.8 377.7 381.1	0.0 0.0 0.1 0.0		
¹ Feet above confluence with the	Passaic River									
	ENCY MANAGEMENT AGENCY		FLOODWAY DATA							
PASSAIC (ALL JU	COUNTY,			SLIPPERY ROCK BROOK						

	FLOODING SOUF	ICE		FLOODWA	Y	v	BASE F ATER-SURFAC (FEET N	CE ELEVATION			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
	uaw Brook A B C D E F G H I J K L M N Sphens Lake Brook	$\begin{array}{c} 270^{1} \\ 586^{1} \\ 985^{1} \\ 1,920^{1} \\ 2,288^{1} \\ 2,695^{1} \\ 3,360^{1} \\ 4,270^{1} \\ 4,940^{1} \\ 6,110^{1} \\ 6,471^{1} \\ 8,215^{1} \\ 8,940^{1} \\ 9,245^{1} \\ \end{array}$	15 12 40 26 23 19 34 22 24 63 27 16 21 14	72 56 134 65 103 63 71 85 64 111 38 40 35 34	9.3 12.0 5.0 9.1 5.7 9.4 8.3 6.9 9.3 5.3 6.8 6.5 7.4 7.7	246.1 253.5 261.2 277.8 303.5 313.2 324.9 343.5 357.2 375.4 384.7 401.3 406.3 410.6 269.7	246.1 253.5 261.2 277.8 303.5 313.2 324.9 343.5 357.2 375.4 384.7 401.3 406.3 410.6 269.7	246.3 253.5 261.4 277.8 303.7 313.2 324.9 343.7 357.2 375.5 384.7 401.3 406.3 410.7 269.7	0.2 0.0 0.2 0.0 0.2 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1		
	A B C D E	3,865 ² 4,190 ² 4,250 ² 4,925 ² 5,235 ²	117 199 179 38 20	493 189 456 67 49	1.4 3.6 1.5 6.5 9.0	269.7 270.7 277.6 282.1 296.4	269.7 270.7 277.6 282.1 296.4	269.7 270.7 277.6 282.3 296.4	0.0 0.0 0.2 0.0		
¹ Fe	ephens Lake Brook Branch 1 A B C eet above confluence with Molly eet above mouth	4,620 ² 4,735 ² 5,148 ² y Ann Brook	10 52 119	17 275 192	6.6 0.4 0.6	504.6 512.4 518.0	504.6 512.4 518.0	504.6 512.6 518.2	0.0 0.2 0.2		
TABL					FLOODWAY DATA						
LE 10	PASSAIC (ALL JUR	COUNTY,		S	SQUAW BROOK – STEPHENS LAKE BROOK – STEPHENS LAKE BROOK BRANCH 1						

FLOODING SOU	RCE		FLOODWA	Y	Ŵ	BASE F	CE ELEVATION		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	(FEET N/ WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Stephens Lake Brook Branch 2 A B C D E F G	200 ¹ 460 ¹ 850 ¹ 1,045 ¹ 1,662 ¹ 2,289 ¹ 3,960 ¹	49 52 69 23 12 21 59	50 50 51 31 25 31 60	4.2 4.2 4.1 6.7 8.3 6.7 2.3	322.3 342.7 355.8 364.0 404.4 445.1 487.0	322.3 342.7 355.8 364.0 404.4 445.1 487.0	322.3 342.7 355.8 364.0 404.4 445.1 487.2	0.0 0.0 0.0 0.0 0.0 0.0 0.2	
Third River A B C D E F G H I J K L M N	500^{2} $2,500^{2}$ $3,500^{2}$ $4,500^{2}$ $5,500^{2}$ $6,500^{2}$ $7,000^{2}$ $49,000^{2}$ $50,050^{2}$ $51,568^{2}$ $57,500^{2}$ $59,000^{2}$ $61,000^{2}$ $63,488^{2}$	$ \begin{array}{r} 167 \\ 88 \\ 118 \\ 54 \\ 95 \\ 148 \\ 63 \\ 189^3 \\ 120^3 \\ 217 \\ 125 \\ 53 \\ 31 \\ 42 \\ \end{array} $	1.343 479 1.028 377 541 770 494 530 717 687 230 118 89 325	3.1 8.6 4.0 10.9 7.6 5.3 8.3 4.3 3.2 2.0 3.7 7.3 9.7 2.7 mputed without c	9.1 10.7 16.1 16.6 23.3 31.0 32.6 178.3 186.4 194.1 230.0 236.1 246.0 270.6 onsideration of backw	5.8 ⁴ 10.7 16.1 16.6 23.3 31.0 32.6 178.3 186.4 194.1 230.0 236.1 246.0 270.6 water effects from	5.9 10.7 16.1 16.6 23.5 31.0 32.7 178.3 186.5 194.2 230.0 236.1 246.0 270.7 the Passaic River	$\begin{array}{c} 0.1 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \end{array}$	
	ary	NJ	STE	FLOODWAY DATA STEPHENS LAKE BROOK BRANCH 2 – THIRD RIVE					

						BASE F		
FLOODING SOU	RCE		FLOODWA	Y	V	VATER-SURFAC	CE ELEVATION	
						(FEET N	AVD88)	
			SECTION	MEAN				
CROSS SECTION	DISTANCE	WIDTH	AREA	VELOCITY	REGULATORY	WITHOUT	WITH	INCREASE
CHO33 SECTION	DISTANCE	(FEET)	(SQUARE	(FEET PER	REGULATORT	FLOODWAY	FLOODWAY	INCREASE
			FEET)	SECOND)				
Tributary 1 to Posts Brook				,				
А	3,620 ¹	43	109	1.2	222.7	222.7	222.8	0.1
В	5,010 ¹	50	47	227.1	226.3	226.3	226.3	0.0
С	5,780 ¹	47	111	227.9	227.1	227.1	227.2	0.1
D	7,440 ¹	13	13	240.7	239.9	239.9	239.9	0.0
E	7,680 ¹	104	204	244.2	243.4	243.4	243.4	0.0
F	8,100 ¹	41	88	244.4	243.6	243.6	243.6	0.0
G	8,475 ¹	15	14	249.0	248.2	248.2	248.2	0.0
Н	9,270 ¹	11	11	265.4	264.6	264.6	264.6	0.0
I	9,670 ¹	13	11	278.4	277.6	277.6	277.6	0.0
J	10,400 ¹	23	32	288.9	288.1	288.1	288.1	0.0
К	11,380 ¹	15	12	325.3	324.5	324.5	324.5	0.0
Tributary 2 to Posts Brook								
A	15,300 ²	45	125	1.2	242.4	242.4	242.4	0.0
В	16,476 ²	44	29	4.7	245.9	245.9	245.9	0.0
С	16,755 ²	30	26	5.3	254.3	254.3	254.3	0.0
Tributary 1 to Singac Brook								
A	280 ³	34	85	5.1	207.4	207.4	207.6	0.2
В	680 ³	67	134	3.2	213.1	213.1	213.1	0.0
_					-	-	_	

¹Feet above confluence with Posts Brook

²Feet above mouth

TABLE

10

³Feet above confluence with Singac Brook

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

TRIBUTARY 1 TO POSTS BROOK – TRIBUTARY 2 TO POSTS BROOK – TRIBUTARY 1 TO SINGAC BROOK

	FLOODING SOUF			FLOODWA	V	14	BASE F VATER-SURFAC			
	FLOODING SOUP			FLOODWA	T	V	(FEET N			
			SECTION	MEAN		(
	CROSS SECTION	DISTANCE	WIDTH	AREA	VELOCITY	REGULATORY	WITHOUT	WITH	INCREASE	
	CROSS SECTION	DISTANCE	(FEET)	(SQUARE	(FEET PER	MEGOLATONT	FLOODWAY	FLOODWAY	INCITEAGE	
				FEET)	SECOND)					
Iri	butary 3 to Singac Brook	10 ¹	165	506	2.9	180.2	180.1 ⁴	180.3	0.2	
	A B	170 ¹	98	506 246	2.9	180.2	180.2	180.3	0.2	
	C	540 ¹	313	528	1.9	180.6	180.6	180.8	0.2	
	D	830 ¹	35	85	5.3	181.4	181.4	181.5	0.1	
	E	1,930 ¹	78	258	1.7	187.2	187.2	187.4	0.2	
	F	2,190 ¹	80	371	1.2	187.8	187.8	187.8	0.0	
	G	2,830 ¹	84	88	5.2	188.1	188.1	188.3	0.2	
	Н	3,720 ¹	58	120	3.8	189.9	189.9	190.0	0.1	
	I	4,590 ¹	73	227	2.0	196.4	196.4	196.6	0.2	
	J	4,800 ¹	97	323	1.4	199.9	199.9	200.1	0.2	
	K	5,830 ¹	23	52	8.7	206.5	206.5	206.5	0.0	
	L	6,910 ¹	52	160	2.8	216.6	216.6	216.6	0.0	
Tri	butary to Van Dam Brook									
	А	80 ²	131	235	0.8	250.2	249.0 ⁵	249.0	0.0	
	В	533 ²	78	136	1.3	250.4	250.4	250.5	0.1	
	С	1,358 ²	23	41	4.4	251.4	251.4	251.5	0.1	
Va	n Dam Brook									
	A	100 ³	27	59	7.6	248.4	240.8 ⁶	241.0	0.2	
	В	938 ³	28	115	3.9	250.2	247.5 ⁵	247.5	0.0	
	C	1,632 ³	112	256	1.7	250.2	248.7 ⁵	248.9	0.2	
	D	1,959 ³	177	274	1.2	250.2	249.0 ⁵	249.2	0.2	
	E	3,827 ³	24	47	6.3	254.4	254.4	254.5	0.1	
	G	4,379 ³ 4,549 ³	103 89	164 168	1.8 1.7	262.5	262.5	262.7	0.2	
	H	4,549 ³ 5,389 ³	89 20	37	7.9	263.2 277.5	263.2 277.5	263.4 277.5	0.2 0.0	
	1	5,981 ³	51	154	1.9	317.9	317.9	318.0	0.0	
¹ Fe	eet above confluence with Sing	,				deration of backwate			0.1	
	eet above confluence with Van			•		deration of backwate				
	eet above confluence with Pequ					deration of flooding c			k River	
	FEDERAL EMERGEN	CY MANAGEMEN	T AGENCY							
TABL						FLOOI	DWAY DA	ТА		
			NI 1							
m	PASSAIC	•		ты						
—	(ALL JUR	ISDICTION	S)		TRIBUTARY 3 TO SINGAC BROOK – TRIBUTARY TO VAN DAM BROOK – VAN DAM BROOK					
0										

FLOODING SOL	IRCE		FLOODWA	Y	v	BASE F ATER-SURFAC (FEET N	CE ELEVATION		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Wabash Brook A B C D E Wanaque River A B C D E F G H I J K L J K L M N O P Q R S T	$\begin{array}{c} 340^1\\ 610^1\\ 880^1\\ 1,100^1\\ 1,620^1\\ \end{array}\\ \begin{array}{c} 168^2\\ 2,029^2\\ 3,252^2\\ 4,765^2\\ 6,098^2\\ 7,074^2\\ 7,722^2\\ 9,078^2\\ 9,571^2\\ 10,195^2\\ 11,969^2\\ 14,389^2\\ 16,639^2\\ 17,674^2\\ 19,620^2\\ 21,158^2\\ 23,387^2\\ 24,950^2\\ 27,055^2\\ 27,294^2\\ \end{array}$	65 30 24 32 54 676 ³ 853 773 407 516 319 332 129 152 225 279 395 821 1,086 482 575 975 1,096 170 84	436 214 172 264 384 6,027 4,079 4,213 1,992 3,750 1,463 2,303 1,583 2,014 2,420 2,616 3,882 6,990 7,045 3,289 3,965 7,128 5,609 1,499 954	1.8 3.6 4.5 2.9 2.0 2.6 2.5 5.4 2.9 7.3 4.7 6.8 5.3 4.4 4.1 2.8 1.5 1.5 3.3 2.7 1.5 1.9 7.1 11.2	32.6 32.7 40.4 40.9 41.6 191.3 192.5 193.0 194.4 197.6 197.9 200.8 202.5 205.4 207.0 208.5 211.0 212.3 212.6 213.6 215.4 217.0 217.5 219.2 220.0	32.6 32.7 40.4 40.9 41.6 191.3 192.5 193.0 194.4 197.6 197.9 200.8 202.5 205.4 207.0 208.5 211.0 212.3 212.6 213.6 215.4 217.0 217.5 219.2 220.0	32.8 32.9 40.5 41.1 41.8 191.4 192.7 193.2 194.6 197.7 198.0 200.9 202.6 205.5 207.1 208.6 211.2 212.5 212.8 213.8 215.6 217.2 217.7 219.4 220.1	$\begin{array}{c} 0.2\\ 0.2\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	
² Feet above confluence with the ³ Floodway outside county bound FEDERAL EMERGEN PASSAIC	dary		FLOODWAY DATA						

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

10

WABASH BROOK – WANAQUE RIVER

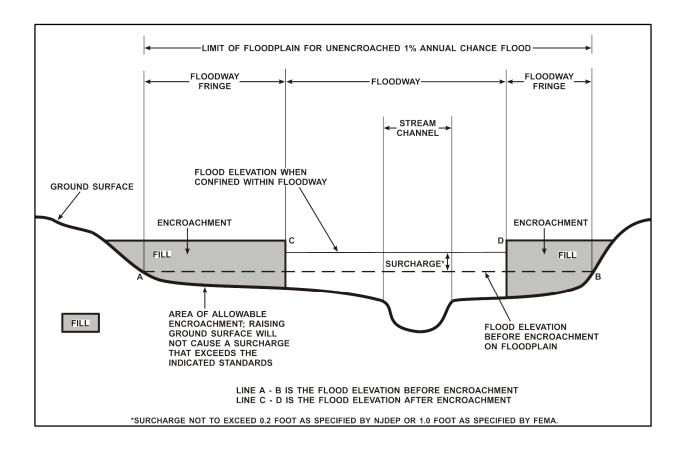
ODING SOUF	RCE		FLOODWA	Y	M	BASE F ATER-SURFAC (FEET N	CE ELEVATION		
ECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FFFT)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
			1 – – – – – – – – – – – – – – – – – – –	SLOOND)					
	90 ¹	20	131	13.9	28.8	28.8	29.0	0.2	
								0.2	
								0.2	
								0.2	
								0.0	
								0.1	
								0.0	
								0.0	
								0.2	
								0.2	
								0.2	
								0.2	
								0.2	
								0.2	
								0.2	
								0.2	
								0.0	
								0.0	
								0.2	
								0.2	
								0.2	
								0.2	
								0.2	
								0.2	
								0.1	
١	14,820 ⁺ 14,980 ¹	11 16	32 36	8.6 7.6	154.6 168.2	154.6 168.2	154.6 168.3	0.0 0.1	
on Corporate Lin	nits								
	CY MANAGEMEN	T AGENCY							
FEDERAL EMERGENCY MANAGEMENT AGENCY					FLOOD	DWAY DA	ТА		
				WEASEL BROOK					
	on Corporate Lin AL EMERGENC ASSAIC	90 ¹ 431 ¹ 900 ¹ 1,140 ¹ 1,989 ¹ 2,390 ¹ 2,510 ¹ 3,580 ¹ 3,940 ¹ 4,030 ¹ 4,560 ¹ 5,910 ¹ 6,740 ¹ 7,230 ¹ 7,630 ¹ 11,271 ¹ 11,445 ¹ 12,122 ¹ 12,442 ¹ 12,837 ¹ 13,068 ¹ 13,283 ¹ 13,570 ¹ 14,171 ¹ 14,425 ¹ 14,820 ¹ 14,980 ¹ m Corporate Limits AL EMERGENCY MANAGEMEN	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ECTION DISTANCE WIDTH (FEET) AREA (SQUARE FEET) 901 20 131 4311 20 175 9001 19 176 1,1401 21 205 1,9891 20 127 2,3901 19 140 2,5101 21 155 3,5801 20 138 3,9401 21 174 4,0301 21 223 4,5601 18 147 5,9101 19 168 6,7401 15 102 7,2301 92 305 7,6301 91 533 11,2711 129 373 11,4451 375 3,141 12,2421 234 981 12,8371 162 265 13,0681 62 180 13,2831 290 1,006 13,2831 290 1,006 14,4251 10<	ECTION DISTANCE WIDTH (FEET) AREA (SQUARE FEET) VELOCITY (FEET PER SECOND) 901 20 131 13.9 4311 20 175 10.4 9001 19 176 10.3 1,1401 21 205 8.9 1,3891 20 127 14.3 2,3901 19 140 13.0 2,5101 21 155 11.7 3,5801 20 138 13.2 3,9401 21 174 10.5 4,0301 21 123 8.2 4,5601 18 147 12.4 5,9101 19 168 10.8 6,7401 15 102 14.8 7,2301 92 305 5.0 7,63301 91 533 2.8 11,2711 129 373 3.6 11,2421 234 981 1.1 12,8371 162 265<	ECTION DISTANCE WIDTH (FEET) AREA (SQUARE FEET) VELOCITY (FEET PER SECOND) REGULATORY 90' 20 131 13.9 28.8 431' 20 175 10.4 32.0 900' 19 176 10.3 33.7 1,140' 21 205 8.9 35.0 1,989' 20 127 14.3 37.0 2,390' 19 140 13.0 39.9 2,510' 21 155 11.7 40.8 3,580' 20 138 13.2 46.0 3,940' 21 174 10.5 50.1 4,030' 21 223 8.2 52.8 4,560' 18 147 12.4 53.9 5,910' 19 168 10.8 63.7 6,740' 15 102 14.8 70.4 12,122' 200 1,051 1.0 119.8 12,2837' 162	ECTION DISTANCE WIDTH (FEET) REGULATORY (FEET PER FEET) SECOND) REGULATORY FLOODWAY 900 ¹ 20 131 13.9 28.8 28.8 431 ¹ 20 175 10.4 32.0 32.0 900 ¹ 19 176 10.3 33.7 33.7 1,140 ¹ 21 205 8.9 35.0 35.0 2,390 ¹ 19 140 13.0 39.9 39.9 2,510 ¹ 21 155 11.7 40.8 40.8 3,580 ¹ 20 138 13.2 46.0 46.0 3,940 ¹ 21 174 10.5 50.1 50.1 4,030 ¹ 21 223 8.2 52.8 52.8 4,560 ¹ 18 147 12.4 53.9 53.9 5,910 ¹ 19 168 10.8 63.7 63.7 6,740 ¹ 15 102 14.8 70.4 70.4 7,230 ¹ 92 305 5.0 75.2 75.2 7,630 ¹ 91 533 2.8 76.6 78.6 11,271 ¹ 129 373 3.6 111.1 111.1 11,445 ¹ 375 3,141 0.4 119.8 119.8 12,122 ¹ 200 1,051 1.0 119.8 119.8 12,122 ¹ 200 1,051 1.1 20.3 120.3 13,068 ¹ 62 180 6.1 123.9 123.9 12,242 ¹ 11 33 75 3,141 0.4 119.8 119.8 12,124 ² 100 1,051 1.1 20.3 120.3 13,068 ¹ 62 180 6.1 123.9 123.9 13,283 ⁷ 162 265 4.1 120.3 120.3 13,068 ¹ 62 180 6.1 123.9 123.9 13,283 ⁷ 190 191 33 8.8 134.0 134.0 12,837 ¹ 162 265 4.1 120.3 120.3 13,068 ¹ 62 180 6.1 123.9 123.9 13,283 ⁷ 290 1,006 1.1 123.9 123.9 13,283 ⁷ 162 265 4.1 120.3 120.3 13,068 ¹ 62 180 6.1 123.9 123.9 13,283 ⁷ 190 21 217 4.0 131.5 131.5 131.5 131.5 131.5 131.5 131.5 131.5 134.6 15	ECTION DISTANCE WIDTH (FEET) (SQUARE (FEET PER FEET) (SQUARE (FEET PER FEET) (SQUARE (FEET PER SECOND) PLOODWAY (FLOODWAY) (FLOOD	

FLOODING SOURCE		FLOODWAY		BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Weasel Brook (continued)								
AB	15,570 ¹	12	30	9.1	181.2	181.2	181.2	0.0
AC	16,094 ¹	18	38	7.2	189.3	189.3	189.3	0.0
AD	16,640 ¹	15	33	8.4	202.0	202.0	202.0	0.0
AE	16,990 ¹	13	33	8.4	222.7	222.7	222.8	0.1
AF	17,290 ¹	8	32	8.7	228.9	228.9	228.9	0.0
West Brook Reach 1								
А	1,192 ²	151	496	5.0	303.7	303.7	303.8	0.1
В	3,098 ²	532	6,546	0.4	314.8	314.8	314.9	0.1
С	4,746 ²	316	1,231	1.9	335.9	335.9	336.0	0.1
D	6,518 ¹	498	554	4.3	343.2	343.2	343.3	0.1
E	7,858 ¹	49	183	9.9	353.1	353.1	353.1	0.0
F	9,375 ¹	226	411	4.4	371.5	371.5	371.6	0.1
G	10,588 ¹	31	134	11.9	400.6	400.6	400.6	0.0
Н	11,954 ¹	45	156	10.2	457.1	457.1	457.1	0.0
I	13,101 ¹	36	135	11.8	518.6	518.6	518.6	0.0
¹ Feet above Clifton corporate li								

² Feet above confluence of Wanaque Reservoir

TABLE

10


FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

PASSAIC COUNTY, NJ (ALL JURISDICTIONS)

WEASEL BROOK – WEST BROOK REACH 1

_									
	FLOODING SOURCE			BASE FLO FLOODWAY WATER-SURFACE					
	FLOODING SOURCE			FLOODWA	T	WATER-SURFACE ELEVATION (FEET NAVD88)			
				SECTION	SECTION MEAN				
	CROSS SECTION	DISTANCE	WIDTH	AREA	VELOCITY	REGULATORY	WITHOUT	WITH	INCREASE
		DIGITANOL	(FEET)	(SQUARE FEET)	(FEET PER SECOND)		FLOODWAY	FLOODWAY	
We	st Brook Reach 2			1 – – – – – – – – – – – – – – – – – – –	SECOND)				
	А	19,100 ¹	147	126	1.9	900.7	900.7	900.7	0.0
	В	20,532 ¹	23	35	7.1	909.2	909.2	909.2	0.0
	С	20,638 ¹	33	67	3.6	915.0	915.0	915.0	0.0
	D	21,065 ¹	52	48	5.1	920.5	920.5	920.5	0.0
	E	21,130 ¹	244	877	0.6	929.8	929.8	929.8	0.0
	F	22,230 ¹	191	132	2.8	932.7	932.7	932.7	0.0
	G	22,310 ¹	51	238	1.6	934.3	934.3	934.3	0.0
	Н	22,510 ¹	18	43	8.8	935.7	935.7	935.7	0.0
	I	23,230 ¹	10	19	7.9	956.3	956.3	956.3	0.0
	J	23,369 ¹	67	162	0.9	957.8	957.8	957.9	0.1
	K	23,845 ¹	242	628	0.2	957.9	957.9	958.1	0.2
	L	25,500 ¹	86	11	1.0	970.3	970.3	970.3	0.0
Wo	st Brook Branch 7								
vve	A	60 ²	10	8	5.4	930.8	930.8	930.8	0.0
	В	264 ²	6	7	6.1	941.4	941.4	941.4	0.0
	C	480 ²	11	9	5.2	957.1	957.1	957.1	0.0
	D	665 ²	10	9	5.2	980.6	980.6	980.6	0.0
	E	737 ²	33	80	0.5	993.5	993.5	993.5	0.0
	L	101	00	00	0.0	000.0	555.5	000.0	0.0
	et above confluence of Wanac et above mouth	que Reservoir							
	FEDERAL EMERGENCY MANAGEMENT AGENCY								
TA	FLOODWAY DATA								
ABLE.			NT 1						
_E 10					WEST BROOK REACH 2 – WEST BROOK BRANCH 7				

FIGURE 1 – FLOODWAY SCHEMATIC

5.0 **INSURANCE APPLICATIONS**

For flood insurance rating purposes, flood insurance zone designations are assigned to a community based on the results of the engineering analyses. The zones are as follows:

Zone A

Zone A is the flood insurance rate zone that corresponds to the 1-percent-annualchance floodplains that are determined in the FIS by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no base flood elevations or depths are shown within this zone.

Zone AE

Zone AE is the flood insurance rate zone that corresponds to the 1-percent-annualchance floodplains that are determined in the FIS by detailed methods. In most instances, whole-foot BFEs derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone AH

Zone AH is the flood insurance rate zone that corresponds to the areas of 1-percentannual-chance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot BFEs derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone AO

Zone AO is the flood insurance rate zone that corresponds to the areas of 1-percentannual-chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the detailed hydraulic analyses are shown within this zone.

Zone AR

Area of special flood hazard formerly protected from the 1-percent-annual-chance flood event by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1-percent-annual-chance or greater flood event.

Zone A99

Zone A99 is the flood insurance rate zone that corresponds to areas of the 1-percentannual-chance floodplain that will be protected by a Federal flood protection system where construction has reached specified statutory milestones. No BFEs or depths are shown within this zone.

Zone V

Zone V is the flood insurance rate zone that corresponds to the 1-percent-annualchance coastal floodplains that have additional hazards associated with storminduced waves. Because detailed coastal analyses have not been performed for such areas, no BFEs are shown within this zone.

Zone VE

Zone VE is the flood insurance rate zone that corresponds to the 1-percent-annualchance coastal floodplains that have additional hazards associated with storminduced velocity wave action. Whole-foot BFEs derived from the detailed coastal hydraulic analyses are shown at selected intervals within this zone.

Zone X

Zone X (shaded) is the flood insurance rate zone that corresponds to areas within the 0.2-percent-annual-chance floodplain, and areas of 1-percent-annual-chance flooding where average depths are less than 1 foot; areas of 1-percent-annual-chance flooding where the contributing drainage area is less than 1 square mile; and areas protected from the 1-percent-annual-chance flood by levees. No BFEs or depths are shown within this zone. Zone X (unshaded) represents the areas outside the 1- and the 0.2-percent-annual-chance floodplain. No BFEs or depths are shown within these zones.

Zone D

Zone D is the flood insurance rate zone that corresponds to unstudied areas where flood hazards are undetermined, but possible.

6.0 FLOOD INSURANCE RATE MAP

The FIRM is designed for flood insurance and floodplain management applications.

For flood insurance applications, the map designates flood insurance rate zones as described in Section 5.0 and, in the 1-percent-annual-chance floodplains that were studied by detailed methods, shows selected whole-foot BFEs or average depths. Insurance agents use the zones and BFEs in conjunction with information on structures and their contents to assign premium rates for flood insurance policies.

For floodplain management applications, the map shows by tints, screens, and symbols, the 1- and 0.2-percent-annual-chance floodplains. Floodways and the locations of selected cross sections used in the hydraulic analyses and floodway computations are shown where applicable.

The current FIRM presents flooding information for the entire geographic area of Passaic County. Historical data relating to the maps prepared for each community, up to and including this countywide FIS, are presented in Table 11, "Community Map History."

7.0 <u>OTHER STUDIES</u>

FISs are being prepared for Bergen County, New Jersey (All Jurisdictions), Essex County, New Jersey (All Jurisdictions) and Morris County, New Jersey (All Jurisdictions). An FIS was prepared for Sussex County, New Jersey (All Jurisdictions) (FEMA, August 29, 2011) and Orange County, New York (All Jurisdictions) (FEMA, August 3, 2009,) and for Rockland County, New York (All Jurisdictions) (FEMA, March 3, 2014).

Information pertaining for each revised and unrevised flood hazard for each jurisdiction within Passaic County has been compiled into this FIS. Therefore, this FIS supersedes all previously printed FIS Reports for Passaic County, NJ.

			FLOOD HAZARD		
	COMMUNITY NAME	INITIAL IDENTIFICATION	BOUNDARY MAP	FIRM EFFECTIVE DATE	FIRM REVISIONS DATE
Bloomingda	ale, Borough of	March 10, 1972	None	March 10, 1972	July 1, 1974 July 9, 1976 December 4, 1985
Clifton, City	/ of	May 31, 1974	July 2, 1976	June 15, 1982	
Haledon, B	orough of	May 10, 1974	February 6, 1976	March 16, 1981	
Hawthorne	, Borough of	November 30, 1973	3 July 16, 1976	September 17, 1980	August 20, 1982
Little Falls,	Township of	December 28, 1973	3 June 18, 1976	August 17, 1981	
North Hale	don, Borough of	May 31, 1974	April 2, 1976	July 2, 1981	
Passaic, C	ity of	August 31, 1973	June 11, 1976	September 28, 1979	
Paterson, C	City of	June 1, 1973	None	February 16, 1977	
Pompton L	akes, Borough of	June 2, 1970	None	June 2, 1970	September 1, 1970 March 24, 1972 July 1, 1974 July 4, 1975 October 15, 1976 December 18, 1985 September 18, 1987
PA	L EMERGENCY MAN AGENCY SSAIC COUNT LL JURISDICTIO	Y, NJ	со	MMUNITY MAP H	ISTORY

			FLOOD HAZARD				
	COMMUNITY	INITIAL	BOUNDARY MAP	FIRM	FIRM		
	NAME	IDENTIFICATION	REVISIONS DATE	EFFECTIVE DATE	REVISIONS DATE		
	Prospect Park, Borough of	May 3, 1974	March 19, 1976	April 3, 1978			
	Ringwood, Borough of	June 28, 1974	July 16, 1976	February 3, 1982			
	Totowa, Borough of	June 28, 1974	September 10, 1976	August 5, 1985			
	Wanaque, Borough of	May 17, 1974	June 4, 1976	January 16, 1981	August 15, 1989		
	Wayne, Township of	February 16, 1973	None	February 20, 1973	July 1, 1974 November 19, 1976 September 29, 1986 November 18, 1988		
	West Milford, Township of	July 19, 1974	May 28, 1976	January 16, 1981	February 2, 1989		
	Woodland Park, Borough of*	June 28, 1974	June 18, 1976	December 15, 1981			
	*Formerly known as Borough of West Paterson						
₹ ≥	FEDERAL EMERGENCY M AGENCY	ANAGEMENT					
	PASSAIC COUN (ALL JURISDICT	-	COMMUNITY MAP HISTORY				

8.0 LOCATION OF DATA

Information concerning the pertinent data used in the preparation of this FIS can be obtained by contacting FEMA, Federal Insurance and Mitigation Division, 26 Federal Plaza, Room 1337, New York, New York 10278.

9.0 BIBLIOGRAPHY AND REFERENCES

AECOM. (August 2013). Hydraulic analyses for Acid Brook, Cupsaw Brook, Dowling Brook, Haycock Brook, High Mountain Brook, Meadow Brook, Packanack Brook, the Pequannock River, the Pompton River, the Ramapo River, Ringwood Creek, Singac Brook and West Brook; under NJDEP CTP contract P1066-00.

Aerial Data Reduction Associates, Inc. (1971). <u>Topographic Maps</u>, Scale 1:600, Contour Interval 5 Feet.

Aerial Data Reduction Associates, Inc. (April 1978). <u>Topographic Maps</u>, Scale 1"=200', Contour Interval 2 Feet: Borough of Pompton Lakes, New Jersey.

Aerial Data Reductions Associates, Inc. (1977). <u>Aerial Topographic Survey of West</u> <u>Milford, New Jersey</u>, Scale 1:2,400, Contour Interval 2 Feet.

Aerial Data Reductions Associates, Inc., of Pennsauken, New Jersey, prepared for the U.S. Army Corps of Engineers. (April 1978). <u>Topographic Maps, Rockaway River Basin</u>, Scale 1:24,000, Contour Interval 2 Feet: Rockaway, New Jersey.

Aerial Data Reductions Associates, Inc., of Pennsauken, New Jersey. (1977). <u>Aerial</u> <u>Topographic Maps</u>, Scale 1:2,400, Contour Interval 5 Feet: West Milford, New Jersey.

Aero Service Corporation of Philadelphia, Pennsylvania. (1971). <u>Topographic Maps</u>, Scale 1"=200', Contour Interval 2 Feet: Wayne, New Jersey.

Aero Service Corporation of Philadelphia, Pennsylvania. (December 1971). <u>Aerial</u> <u>Photographs, Township of Wayne</u>.

City of Clifton, New Jersey. (March 1947). <u>Report on the Works and Improvements for</u> <u>Alleviating Floods on Weasel, Wabash and MacDonald Brooks</u>. Clifton, New Jersey.

Federal Emergency Management Agency, Federal Insurance Administration. (June 15, 1981). <u>Flood Insurance Study, Borough of Woodland Park (formerly West Paterson),</u> <u>Passaic County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (January 2, 1981). <u>Flood Insurance Study, Borough of North Haledon, Passaic County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (September 16, 1980). <u>Flood Insurance Study, Borough of Haledon, Passaic County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (March 1980). <u>Flood Insurance Study, Borough of Hawthorne, Passaic County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (August 1, 1979). <u>Flood Insurance Study, Township of Cedar Grove, Essex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (1974, Revised 1976). <u>Flood Hazard Boundary Map, Borough of Woodland Park (formerly West Paterson)</u>, Passaic County, New Jersey, Scale 1:6,000.

Federal Emergency Management Agency. (September 30, 2005). <u>Flood Insurance Study.</u> <u>Bergen County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 17, 1992). <u>Flood Insurance Study</u>, <u>Township of Pequannock</u>, <u>Morris County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (August 15, 1989). <u>Flood Insurance Study</u>, <u>Borough of Wanaque</u>, <u>Passaic County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (February 5, 1985). <u>Flood Insurance Study</u>, <u>Borough of Totowa, Passaic County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (February 2, 1989). <u>Flood Insurance Study.</u> <u>Township of West Milford, Passaic County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 18, 1987). <u>Flood Insurance Study.</u> <u>Borough of Pompton Lakes, Passaic County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 4, 1987). <u>Flood Insurance Study</u>, <u>Township of Bloomfield, Essex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (August 4, 1987). <u>Flood Insurance Study</u>, <u>Township of Montclair, Essex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (June 18, 1987). <u>Flood Insurance Study, Town</u> <u>of Nutley, Essex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 29, 1986). <u>Flood Insurance Study</u>, <u>Township of Wayne</u>, <u>Passaic County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 18, 1986). <u>Flood Insurance Study.</u> <u>Township of Rockaway, Morris County, New Jersey</u>. Washington, D.C. Federal Emergency Management Agency. (August 19, 1986). <u>Flood Insurance Study</u>, <u>Borough of Lincoln Park, Morris County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (June 3, 1986). <u>Flood Insurance Study,</u> <u>Township of Fairfield, Essex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (December 4, 1985). <u>Flood Insurance Study</u>, <u>Borough of Bloomingdale</u>, <u>Passaic County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (October 15, 1985) <u>Flood Insurance Study.</u> <u>Borough of Butler, Morris County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (October 15, 1985) <u>Flood Insurance Study.</u> <u>Borough of Riverdale, Morris County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (October 15, 1985). <u>Flood Insurance Study,</u> <u>Town of Warwick, Orange County, New York</u>. Washington, D.C.

Federal Emergency Management Agency. (October 3, 1984). <u>Flood Insurance Study.</u> <u>Borough of North Caldwell, Essex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (August 18, 1983). <u>Flood Insurance Study,</u> <u>Township of Vernon, Sussex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (January 5, 1983). <u>Flood Insurance Study</u>, <u>Township of Jefferson, Morris County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (December 15, 1981). <u>Flood Insurance Study.</u> <u>City of Clifton, Passaic County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (August 2, 1981). <u>Flood Insurance Study</u>, <u>Borough of Ringwood</u>, <u>Passaic County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (July 6, 1981). <u>Flood Insurance Study, Village of Sloatsburg, Rockland County, New York</u>. Washington, D.C.

Federal Emergency Management Agency. (September 1979). <u>Flood Insurance Study, City</u> <u>of Newark, Essex County, New Jersey</u>. Washington, D.C.

Geod Aerial Mapping, Inc. (1976). <u>Field Book for Topographic Maps of the Borough of</u> <u>Hawthorne</u>. New York (Unpublished).

Geod Aerial Mapping, Inc. (1976). <u>Topographic Map of the City of Passaic</u>, Scale 1:2,400, Contour Interval 5 Feet: Oakridge, New Jersey.

Geod Aerial Mapping, Inc. (1976). <u>Topographic Maps</u>, Scale 1:2,400, Contour Interval 5 Feet: Prospect Park, New Jersey. Geod Aerial Mapping, Inc., of Oak Ridge, New Jersey. (1978). <u>Topographic Maps</u> <u>Compiled From Aerial Photographs</u>, Scale 1:2,400, Contour Interval 2 Feet: Denville, New Jersey.

Geod Aerial Mapping, Inc., of Oak Ridge, New Jersey. (1977). <u>Topographic Maps</u> <u>Compiled from Aerial Photographs</u>, Scale 1:2,400, Contour Interval 5 Feet: Jefferson, New Jersey.

Geod Aerial Mapping, Inc., of Oak Ridge, New Jersey. (December 1977). <u>Topographic Maps Compiled From Aerial Photographs</u>, Scale 1:2,400, Contour Interval 2 Feet: Rockaway, New Jersey.

Geod Corporation of Oak Ridge, New Jersey. (December 1976). <u>Topographic Maps</u> <u>Compiled from Aerial Photographs</u>, Scale 1"=200', Contour Interval 5 Feet: Borough of Totowa, New Jersey.

Geod Corporation. (1976). <u>Topographic Maps, Borough of Hawthorne, New Jersey</u>, Scale 1:2,400, Contour Interval 5 Feet.

Geod Corporation. (1976). <u>Topographic Maps, Borough of Little Falls, New Jersey</u>, Scale 1:2,400, Contour Interval 5 Feet.

Geod Corporation. (1976). <u>Topographic Maps</u>, Scale 1:2,400, Contour Interval 5 Feet: City of Clifton, New Jersey

Geod Corporation. (1972). <u>Topographic Maps, Borough of Haledon, New Jersey</u>, Scale 1:2,400, Contour Interval 5 Feet.

Geod Corporation. (December 1976). <u>Topographic Maps, Borough of North Haledon,</u> <u>New Jersey</u>, Scale 1:2,400, Contour Interval 5 Feet.

Geod Corporation. (December 1976). <u>Topographic Maps, Borough of Woodland Park</u> (formerly West Paterson), New Jersey, Scale 1:2,400, Contour Interval 5 Feet.

New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply, in cooperation with the U.S. Geological Survey. (1964). <u>Water</u> Resources Circular 14, Flood Depth Frequency in New Jersey.

New Jersey Department of Environmental Protection, Bureau of Water Control. (1973). Flood Hazard Area Determination Based on Historic Data, Passaic River Basin.

New Jersey Department of Environmental Protection (August 2012). Hydrologic analyses for Buttermilk Falls, Weasel Brook, and Wanaque River.

New Jersey Department of Labor and Workforce Development, New Jersey Data Center. (March 2001). <u>Population for the Counties and Municipalities in New Jersey, 1990 and 2000</u>. Trenton, New Jersey.

Passaic County, New Jersey Multi-Jurisdictional Hazard Mitigation Plan, August 12, 2010

Quinn and Associates of Horsham, Pennsylvania. (1977). <u>Limited Topographic Maps</u>, Scale 1"=200', Contour Interval 5 Feet: Borough of Bloomingdale, New Jersey.

Quinn and Associates of Horsham, Pennsylvania. (March 29, 1972). <u>Aerial Photographs</u>, Scale 1"=1,000': Borough of Bloomingdale, New Jersey.

Quinn and Associates of Horsham, Pennsylvania. (March 29, 1972). Aerial Photographs, Scale 1"=1,000': Borough of Pompton Lakes, New Jersey.

RAMPP. (March 2013). <u>Task Order HSFE02-09-J-0001 for Passaic River Watershed</u> <u>Hydrologic & Hydraulic Study, New Jersey</u>. Fairfax, Virginia.

Robinson Aerial Surveys, Inc. (2006). <u>Topographic Maps of Molly Ann Brook in the City</u> of Paterson, Borough of Haledon, Borough of Prospect Park and Borough of North <u>Haledon</u>. Scale 1"=200', Contour Interval 2 Feet.

Robinson Aerial Surveys, Inc., of Newton, New Jersey. (April 18, 1972). <u>Topographic</u> <u>Maps Compiled From Aerial Photographs</u>, Scale 1:2,400, Contour Interval 2 Feet: Wharton, New Jersey.

Topographic Data Consultants of Berlin, New Jersey. (December 1983). <u>Topographic Maps Compiled From Aerial Photographs</u>, Scale 1:4,800, Contour Interval 4 Feet: Rockaway, New Jersey.

URS Corporation. (August 2013). Hydraulic analyses for Buttermilk Falls, Weasel Brook, the Wanaque River, the Pequannock River, and the Third River; under NJDEP CTP contract P1066-00.

U.S. Army Corps of Engineers, and the Governor's Flood Control Committee for the State of New Jersey. (December 1960). "Passaic River Basin Floodway Control Study", Information Bulletin.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (May 1974). <u>Floodway</u> <u>Determination Using Computer Program HEC-2</u>, <u>Training Document No. 5</u>. Davis, California.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (2008). <u>NY OMRR and</u> <u>R Manual</u>. Davis, California

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (May 2005). <u>HEC-RAS</u> <u>River Analysis System, Version 3.1.3</u>. Davis, California.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (November 2002). <u>HEC-RAS River Analysis System Users Manual</u>. Davis, California.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (October 1973). <u>HEC-2</u> Water Surface Profiles, Generalized Computer Program, Davis, California. U.S. Army Corps of Engineers, New York District. (1938). <u>Flood Control Survey, Passaic</u> <u>River, New Jersey</u>. New York, New York.

U.S. Army Corps of Engineers, Philadelphia District. (February 1993). <u>Molly Ann's Brook</u> <u>Flood Protection Project, Passaic River Basin, Haledon, Prospect Park and Paterson, New</u> <u>Jersey, Design Memorandum, Main Report</u>.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (March 1979). <u>Flood Insurance Study, City of Passaic, Passaic County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (June 1977). <u>Flood Insurance Study, Borough of Prospect Park, Passaic County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (1974, Revised 1976). <u>Flood Hazard Boundary Map</u>, Borough of North Haledon, New Jersey, Scale 1:12,000.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (August 1976). <u>Flood Insurance Study, City of Paterson, Passaic County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (December 28, 1973, Revised June 18, 1976). <u>Flood Hazard Boundary Map, Township of Little Falls, Passaic County, New Jersey</u>, Scale 1:7,500.

U.S. Department of the Army, Corps of Engineers, New York District. (April 1978). <u>Topographic Maps</u>, Scale 1:2,400, Contour Interval 2 Feet: Passaic Basin Study, New Jersey.

U.S. Department of the Army, Corps of Engineers, New York District. (1972). <u>Passaic</u> <u>River Report</u>.

U.S. Department of the Interior, U.S. Geological Survey. (2002). <u>The National Flood</u> <u>Frequency Program, Version 3, A Computer Program for Estimating Magnitude and</u> <u>Frequency of Floods For Ungaged Sites, Water-Resources Investigations Report 02-4168</u>. Reston, Virginia.

U.S. Department of the Interior, U.S. Geological Survey. (January 30, 1998). <u>Users</u> <u>Manual for Program PEAKFQ, Annual Flood Frequency Analysis Using Bulletin 17B</u> <u>Guidelines</u>. Reston, Virginia.

U.S. Department of the Interior, U.S. Geological Survey. (1994). <u>Nationwide Summary</u> of U.S. Geological Survey Regional Regression Equations for Estimating Magnitude and frequency of Floods for Ungaged Sites, 1993, Water-Resources Investigation Report 94-4002. Reston, Virginia.

U.S. Department of the Interior, U.S. Geological Survey, Water Resources. (Retrieved June 6, 2006). <u>USGS 01389765 Molly Ann Brook at North Haledon, New Jersey</u>. National Water Information System: Web Interface. http://waterdata.usgs.gov/nwis/inventory.

U.S. Department of the Interior, Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. (1974). Special Report No. 38, <u>Magnitude and</u> <u>Frequency of Floods in New Jersey with Effects of Urbanization</u>. Trenton, New Jersey.

U.S. Department of the Interior, U.S. Geological Survey. (1972). <u>7.5-Minute Series Flood-</u> <u>Prone Area Maps</u>, Scale 1:2,400, Contour Interval 20 Feet: Paterson, New Jersey.

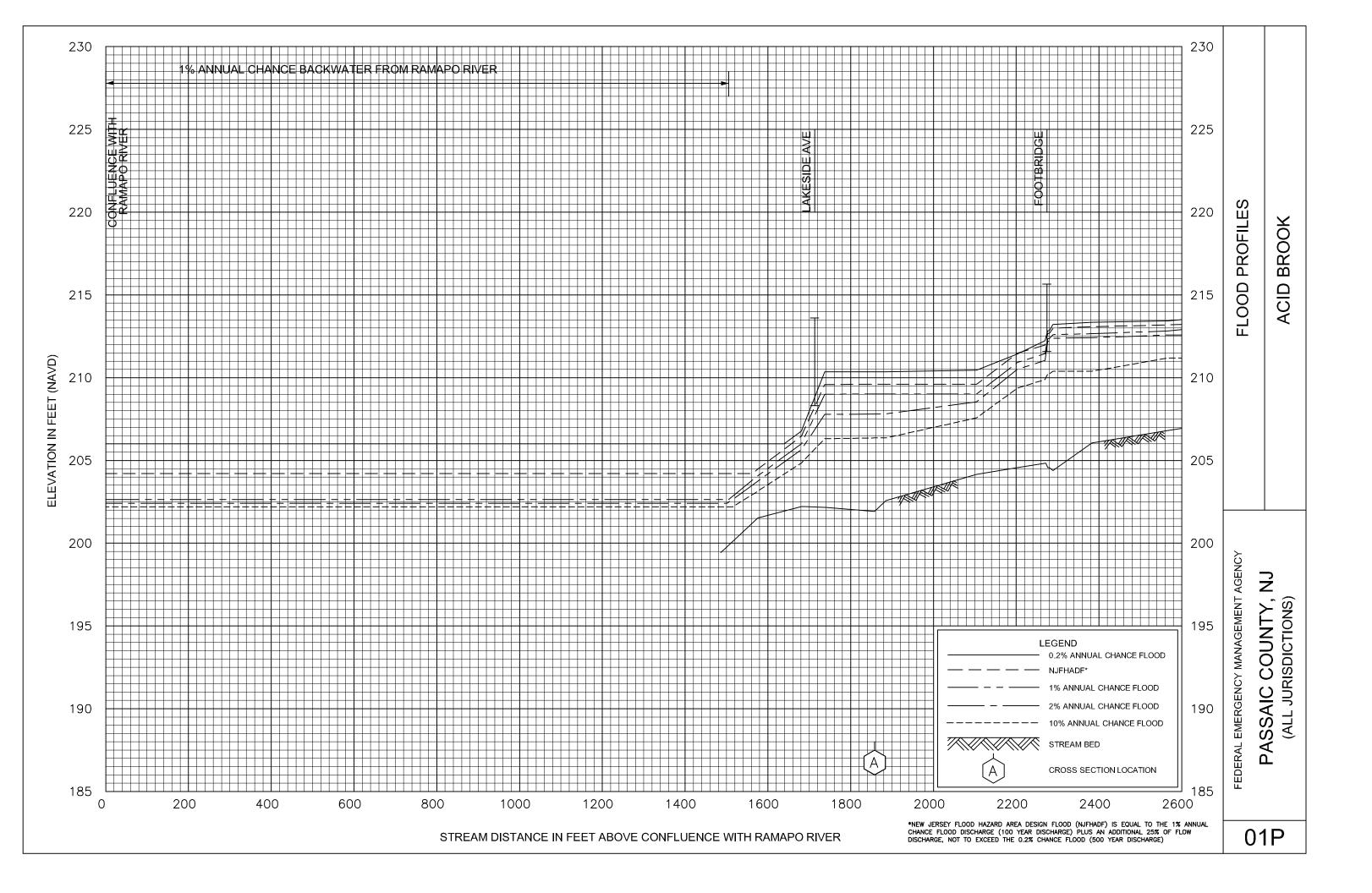
U.S. Department of the Interior, U.S Geological Survey. (1972). <u>7.5-Minute Series Flood-</u> <u>Prone Area Maps</u>, Scale 1:24,000, Contour Interval 20 Feet: Paterson, New Jersey.

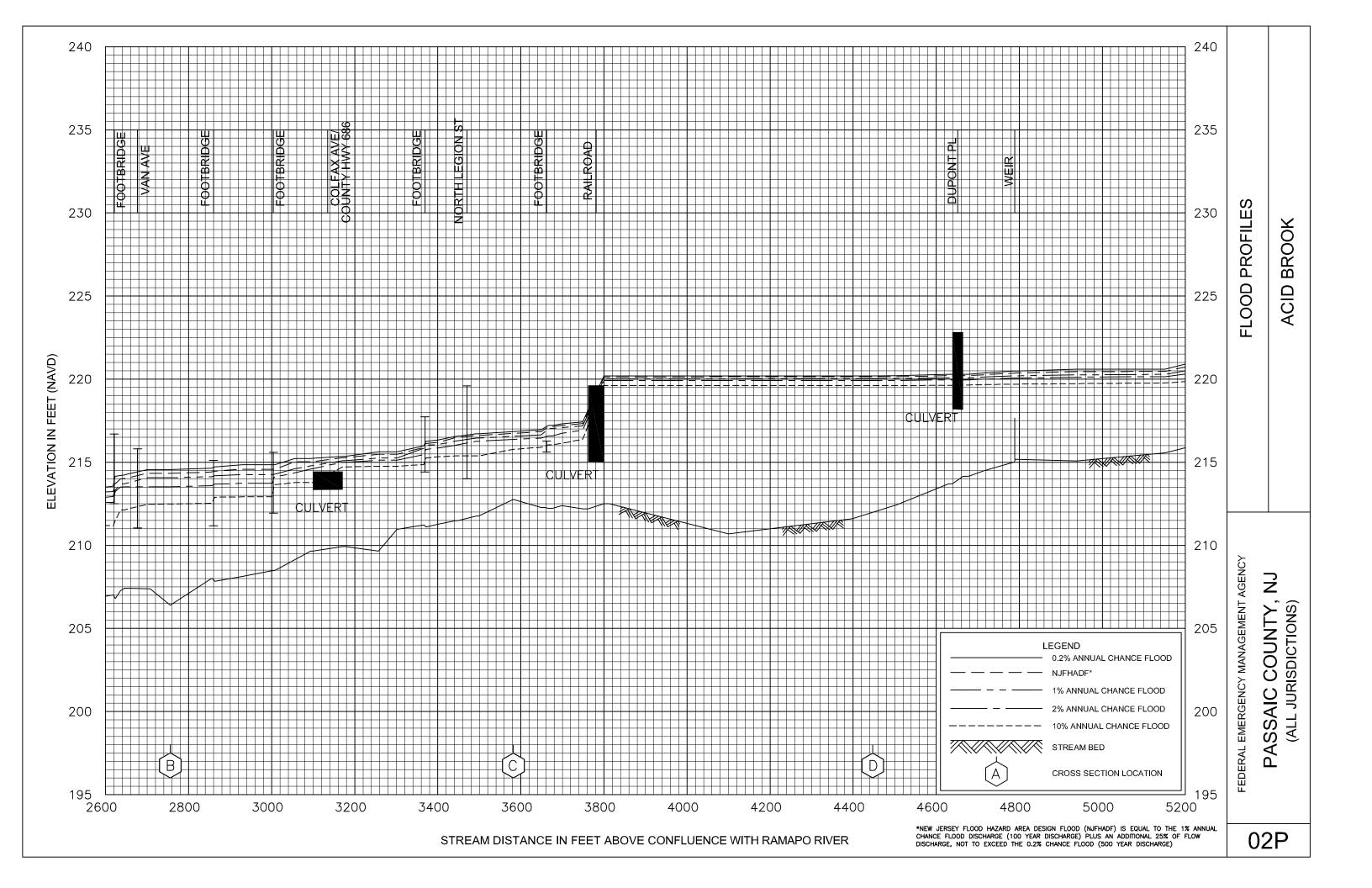
U.S. Department of the Interior, U.S. Geological Survey. (1967). <u>7.5-Minute Series</u> <u>Topographic Maps</u>, Scale 1:24,000, Contour Interval 10 Feet: Weehawken, New Jersey-New York.

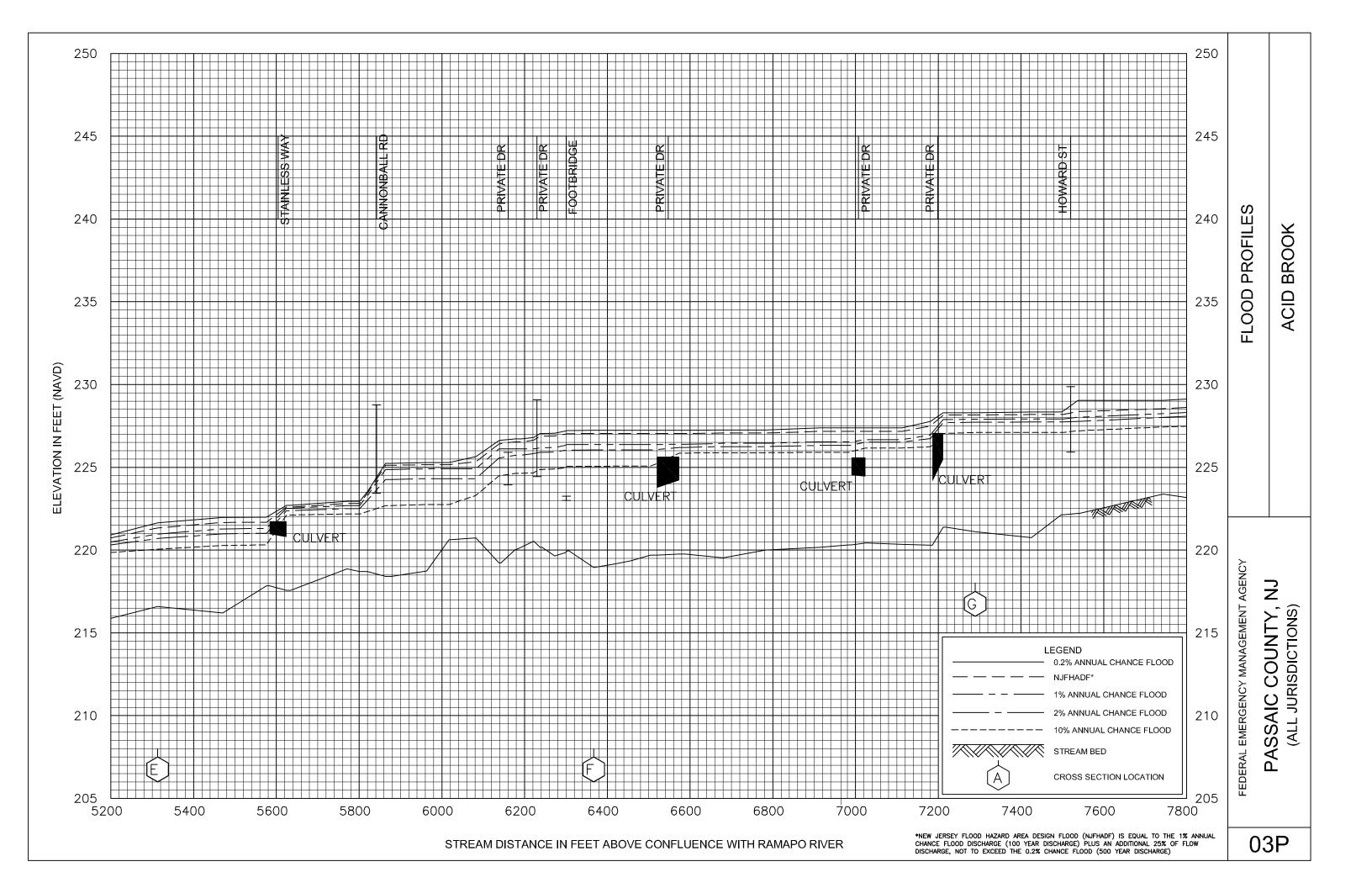
U.S. Department of the Interior, U.S. Geological Survey. (1964). Water Resources Circular No. 14, <u>Flood-Depth Frequency in New Jersey</u>. Trenton, New Jersey.

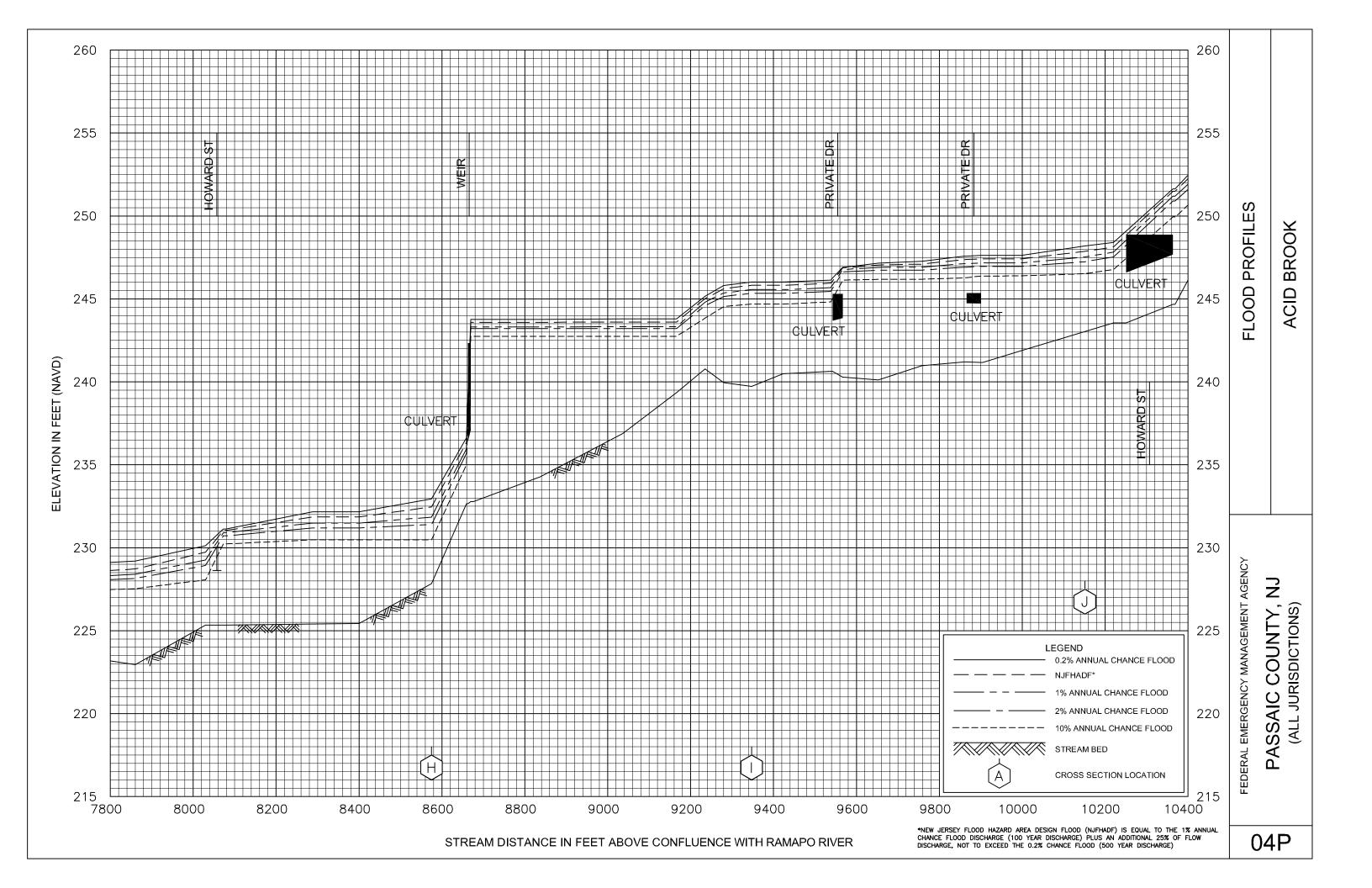
U.S. Department of the Interior, U.S. Geological Survey. (1955). <u>7.5-Minute Series</u> <u>Topographic Maps</u>, Scale 1:24,000, Contour Interval 10 Feet: Hackensack, New Jersey (Photorevised 1970); Paterson, New Jersey (Photorevised 1970).

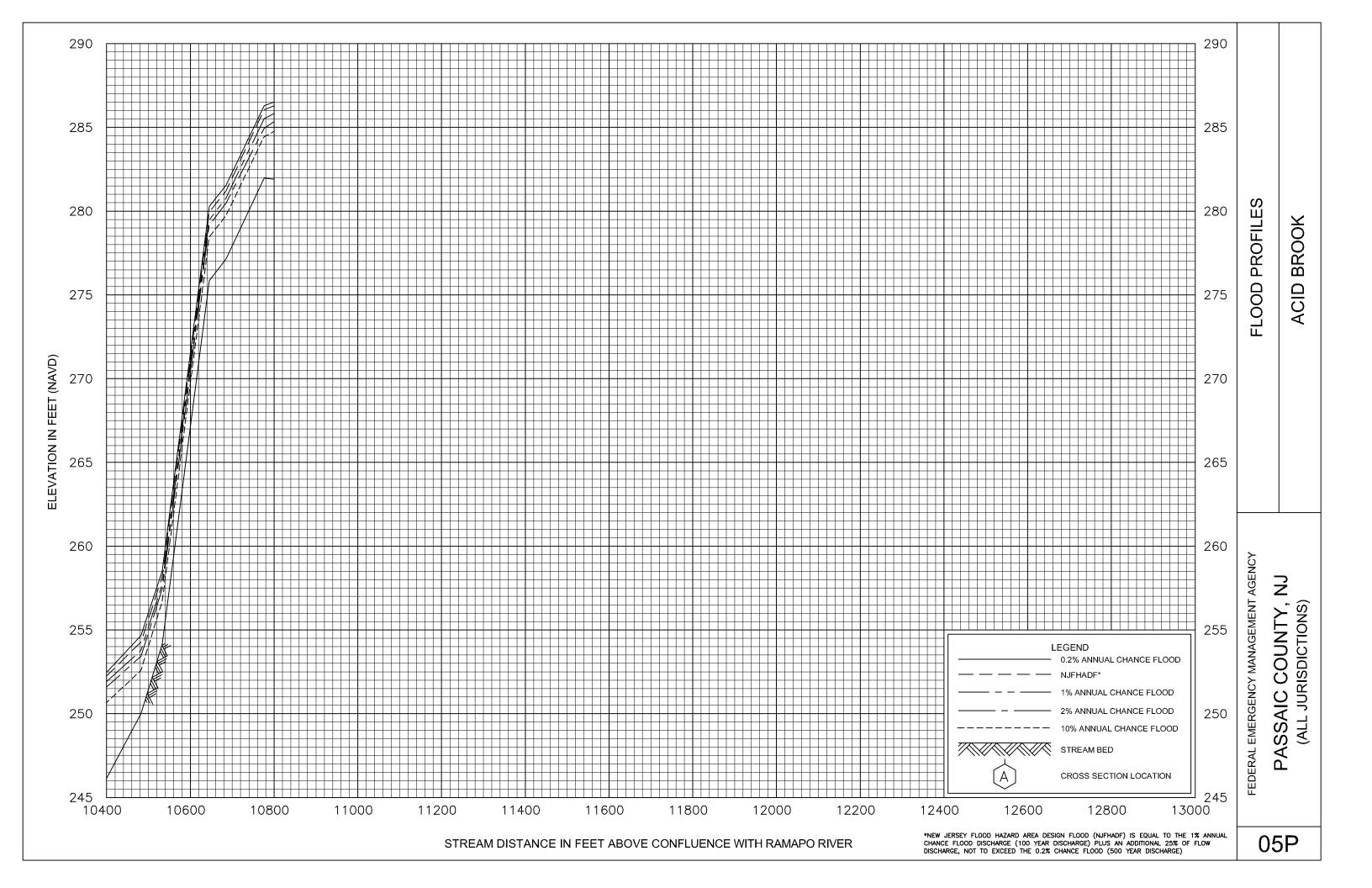
U.S. Department of the Interior, U.S. Geological Survey. (1955). <u>7.5-Minute Series</u> <u>Topographic Maps</u>, Scale 1:24,000, Contour Interval 20 Feet: Orange, New Jersey (Photorevised 1970); Pompton Plains, New Jersey (Photorevised 1970); Ramsey, New Jersey (Photorevised 1970); Sloatsburg, New York.

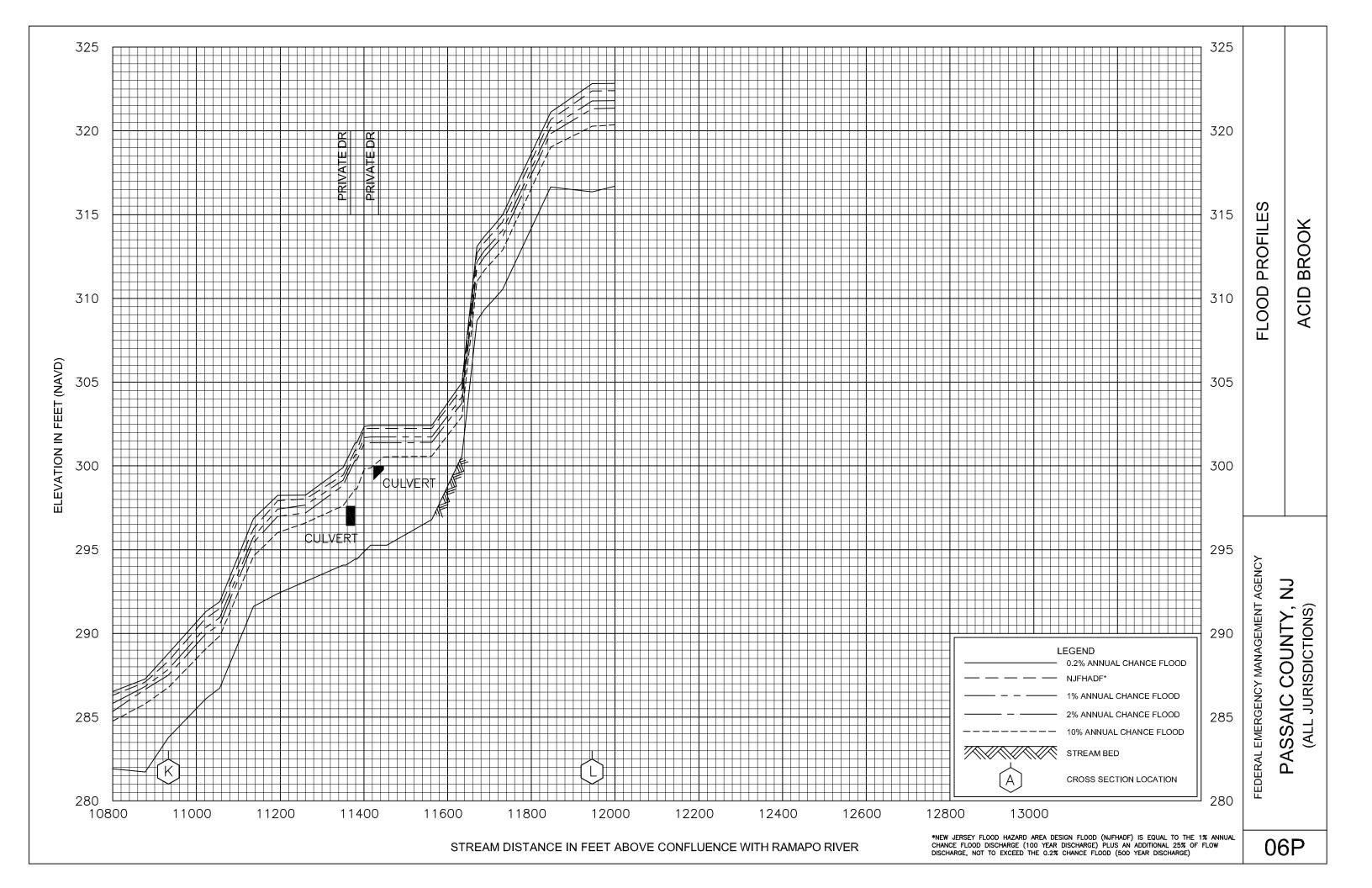

U.S. Department of the Interior, U.S. Geological Survey. (1954). <u>7.5-Minute Series</u> <u>Topographic Maps</u>, Scale 1:24,000, Contour Interval 20 Feet: Caldwell, New Jersey (Photorevised 1970); Greenwood Lake, New Jersey-New York; Newfoundland, New Jersey (Photorevised 1976); Wanaque, New Jersey (Photorevised 1971); Wawayanda, New Jersey-New York.

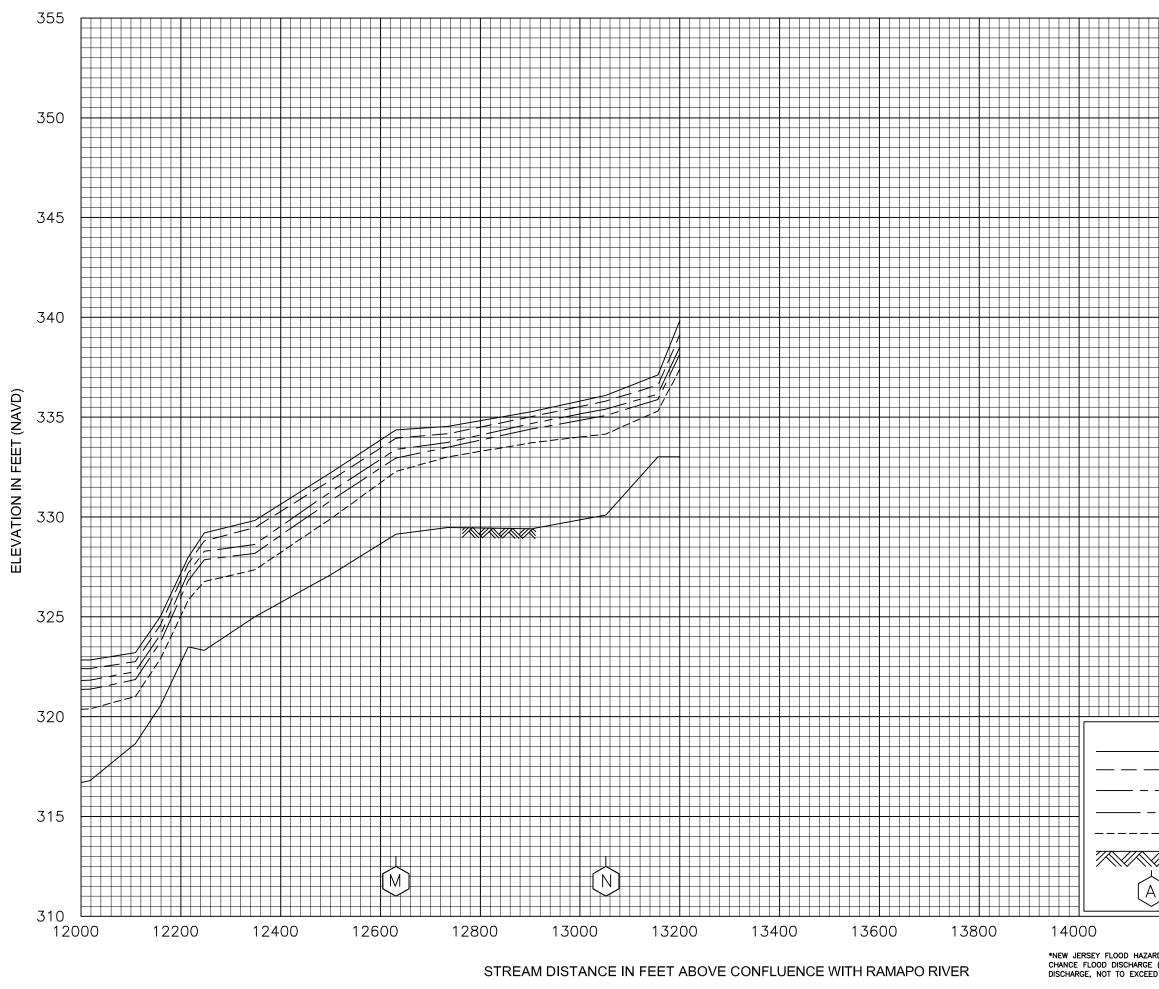

U.S. Department of the Interior, U.S. Geological Survey. (1904). Water Supply and Irrigation Paper 92, <u>The Passaic Flood of 1903</u>.

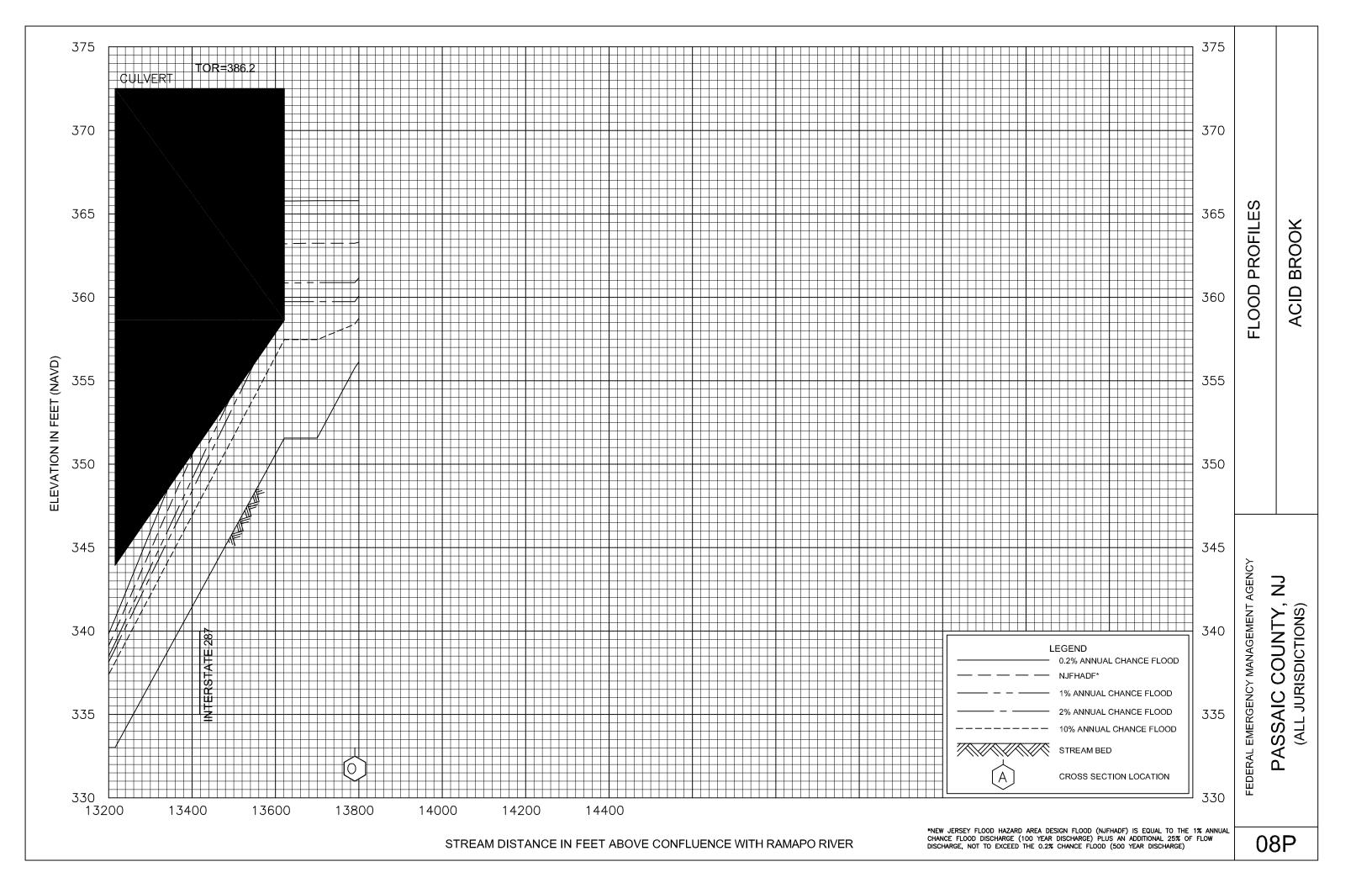

Water Resources Council. (March 1976). , Bulletin 17, "Guidelines for Determining Flood Flow Frequencies." Washington, D.C.

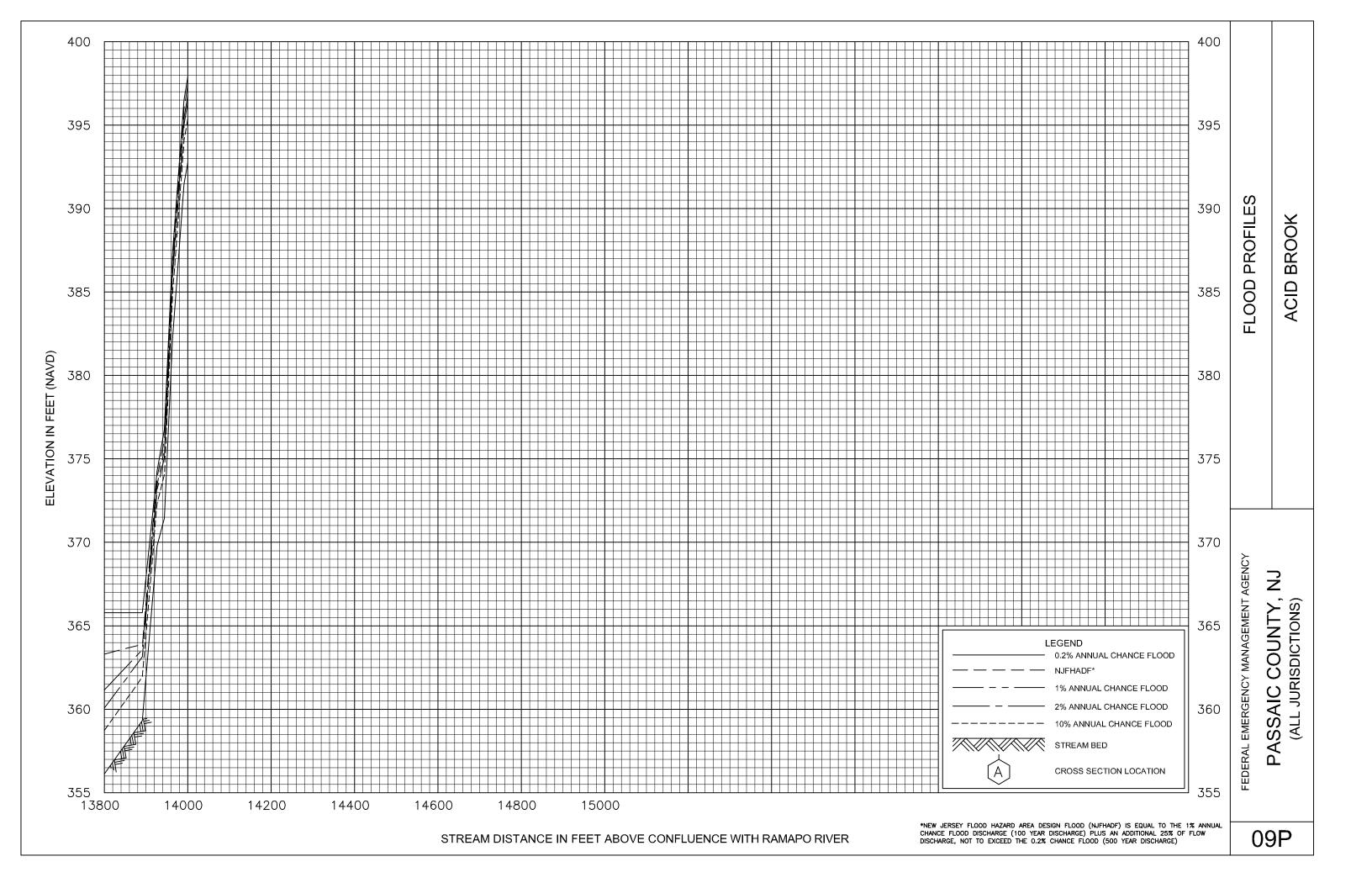

Water Resources Council. (December 1967). Bulletin 15, "A Uniform Technique for Determining Flood Flow Frequencies."

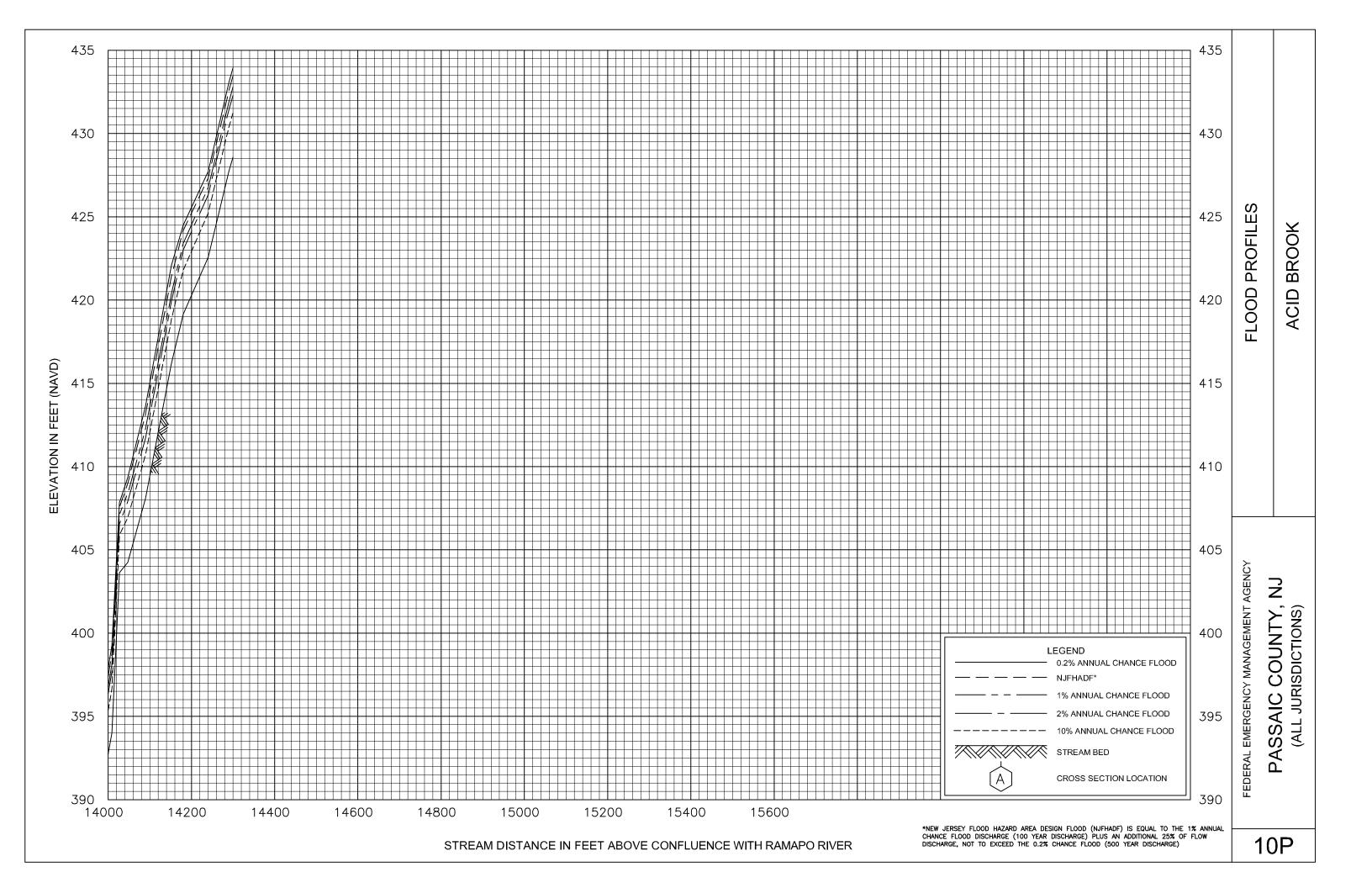

Works Project Administration. (1935). <u>New Jersey Riparian Stream and Waterways</u> <u>Survey, Passaic River</u>.

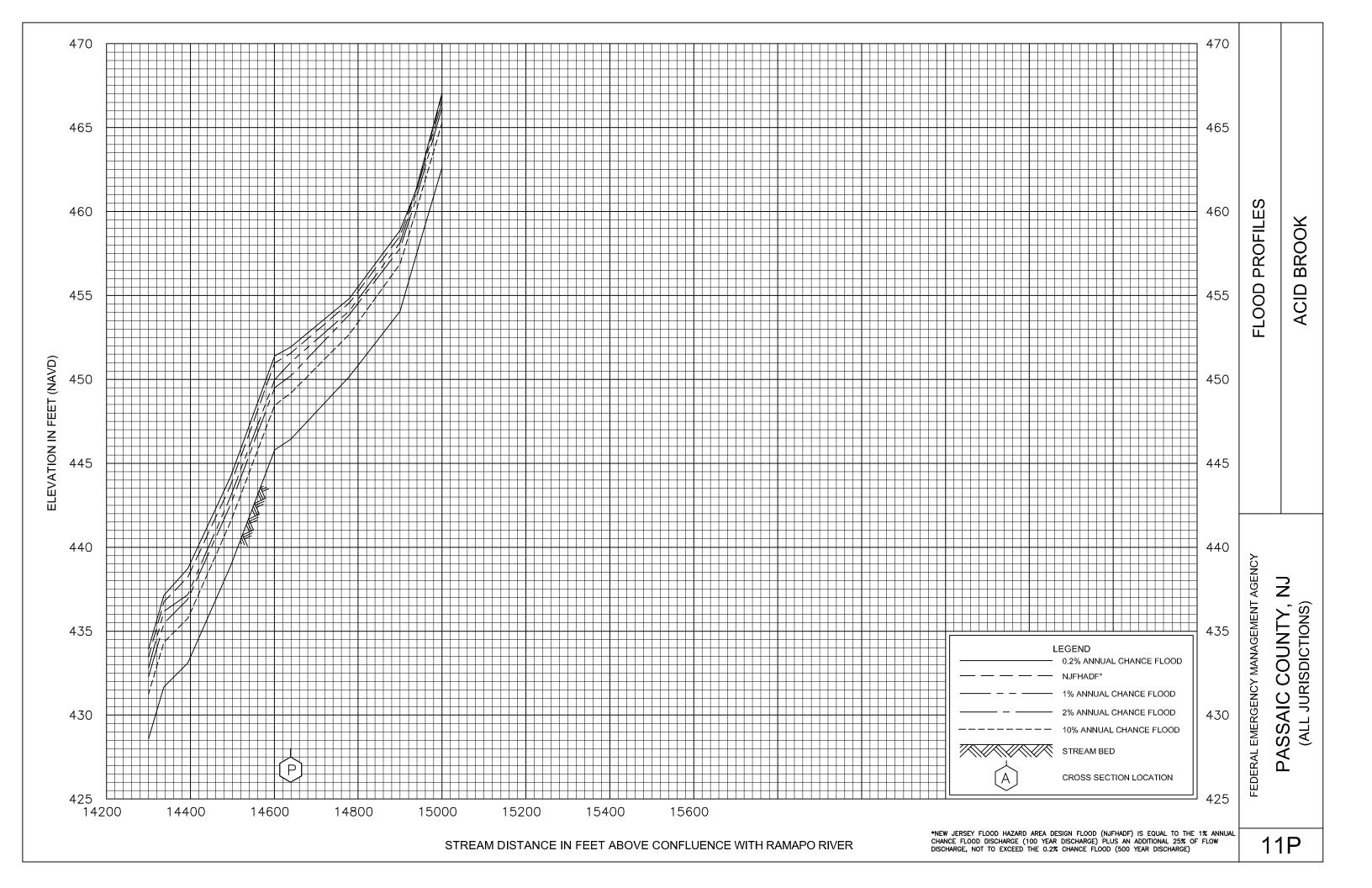


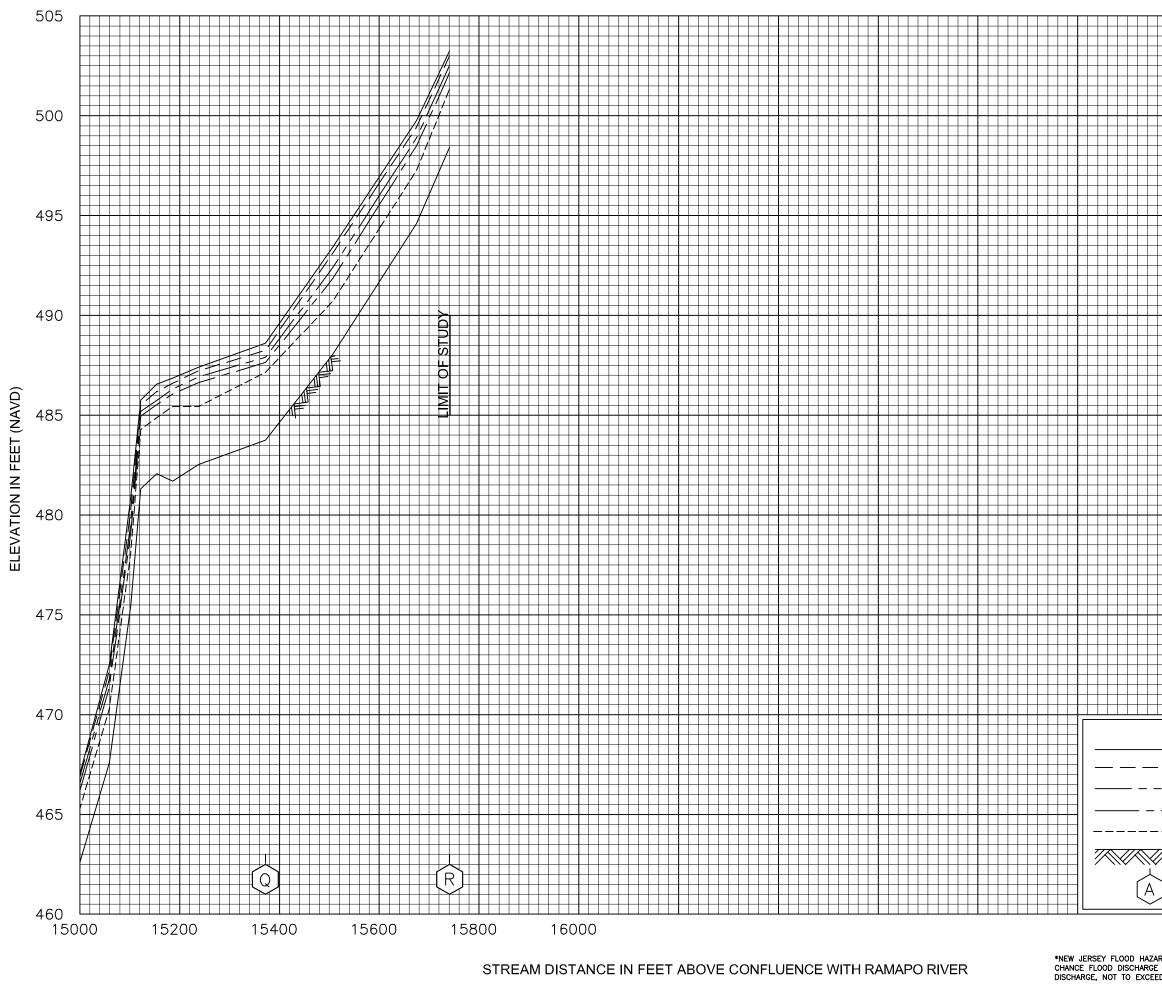


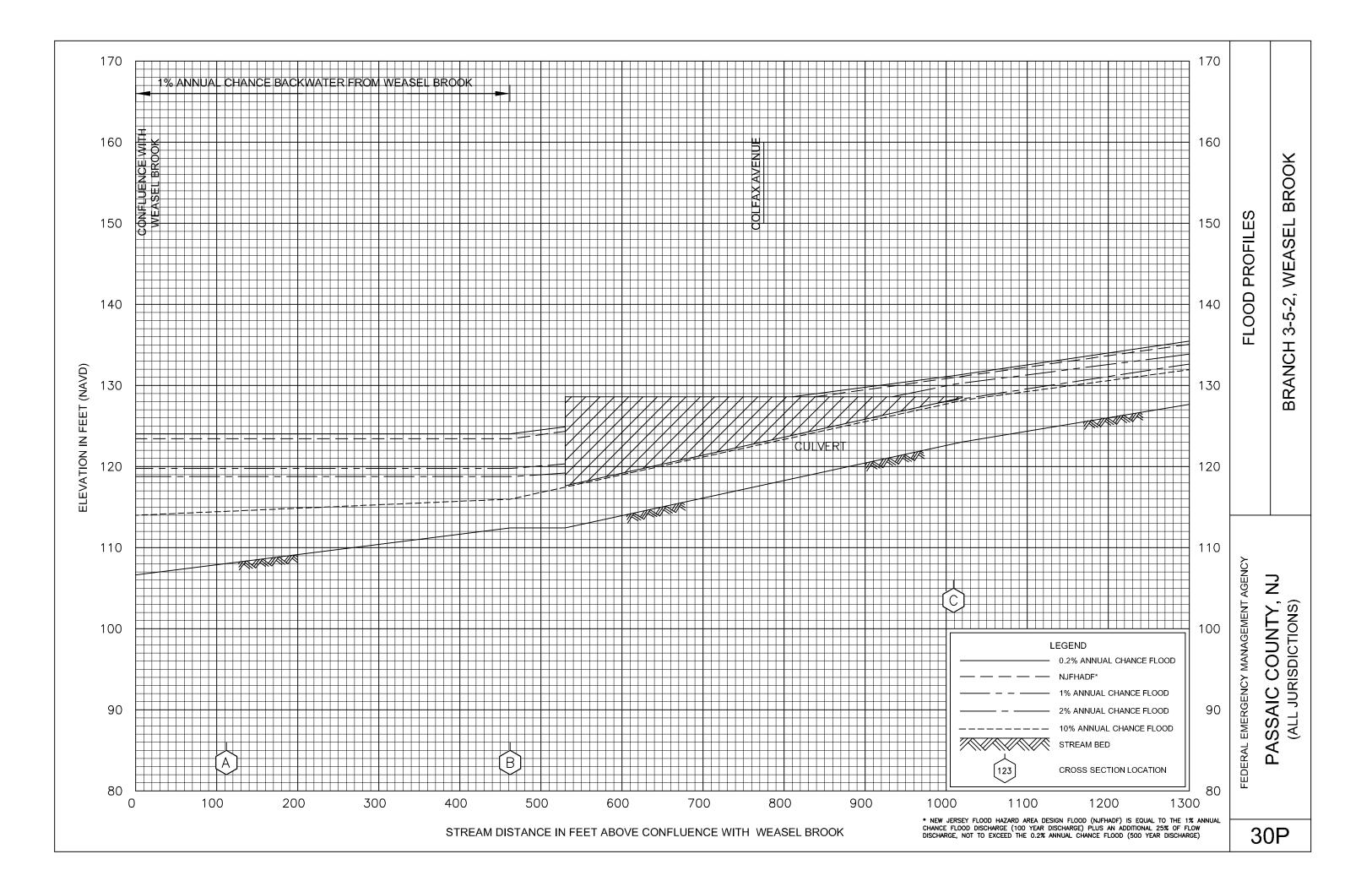


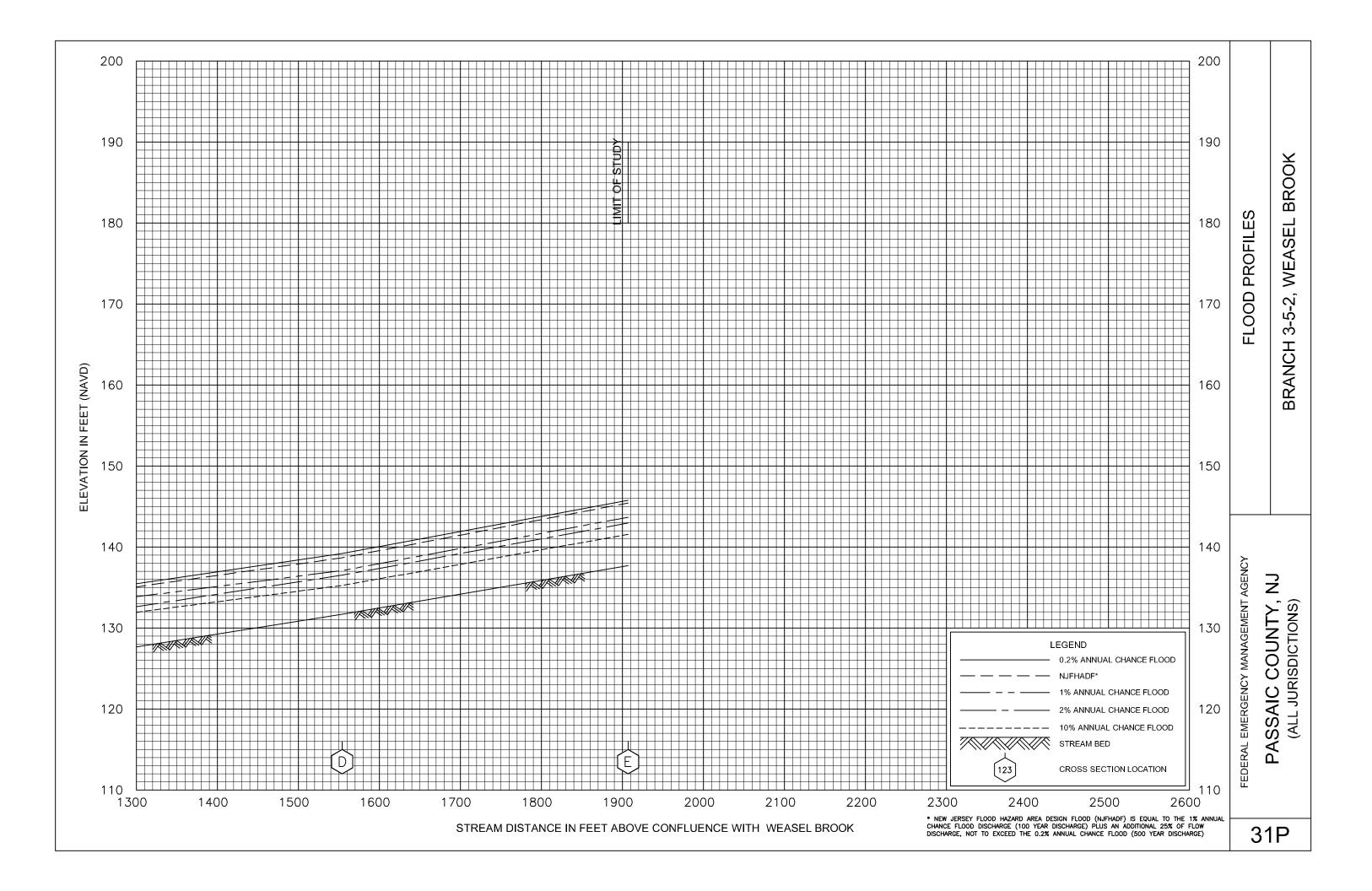







(100 YEAR DIS	RD AREA DESIGN FLOOD (NJFHADF) IS EQUAL TO THE 1% ANNUAL (100 YEAR DISCHARGE) PLUS AN ADDITIONAL 25% OF FLOW D THE 0.2% CHANCE FLOOD (500 YEAR DISCHARGE)				
CROSS SECTION LOCATION 310					
	2% ANNUAL CHANCE FLOOD 10% ANNUAL CHANCE FLOOD STREAM BED	FEDERAL EMERGENCY MANAGEMENT AGENCY PASSAIC COUNTY, NJ (ALL JURISDICTIONS)			
L	EGEND 0.2% ANNUAL CHANCE FLOOD NJFHADF* 1% ANNUAL CHANCE FLOOD		EMERGENCY MANAGEMENT SSAIC COUNTY, (ALL JURISDICTIONS)		
		320	EMENT A		
		325	Gency JJ		
		330			
		335			
			FLOC		
		340	FLOOD PROFILES ACID BROOK		
		345	FILES		
		350			
		350			
		355			





ARD AREA DESI E (100 YEAR E ED THE 0.2% (12P	
)		
	FEDERAL EMERGENCY MANAGEMENT AGENCY PASSAIC COUNTY, NJ (ALL JURISDICTIONS)	
- <u> </u>	EMERGENCY MANAGEMENT SSAIC COUNTY, (ALL JURISDICTIONS)	
L	AANAGE DUN	
	470	TY, I
		AGENC
	475	_≻
	480	
	485	
	490	ACIE
		LOOD PROFILE ACID BROOK
	495	FLOOD PROFILES ACID BROOK
		S
	500	
	505	

